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Abstract—Unified Virtual Memory (UVM) is a promising feature
in CPU-GPU heterogeneous systems that allows data structures to be
accessed by both CPU and GPUs through unified pointers without explicit
data copying. However, the delivered performance of UVM significantly
relies on the efficiency of address translation. The current GPU thread
block (TB) management is not aware of the translation process and heav-
ily thrashes the per-streaming multiprocessor (SM) private Translation
Look-ahead Buffers (TLBs). In this paper, we conduct a comprehensive
characterization of 10 GPU benchmarks and quantify the translation
reuses among the thread blocks. Our observation reveals that there exists
substantial translation reuse within TBs rather than across the TBs.
Moreover, the inter-TB interference significantly enlarges the intra-TB
translation reuse distances. To this end, we propose a translation-aware
TB scheduling and lightweight GPU L1 TLB partitioning to effectively
mitigate the contention. Experimental results show that our proposed
approach improves the L1 TLB hit rate, and this improvement translates
to, on average, a 12.5% execution time reduction.

Index Terms—UVM, GPU, TLB

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely deployed in modern
computing systems to provide acceleration for a wide range of
applications, including machine learning, computer vision, social
networks, and entertainment. However, traditional GPU execution re-
quires significant programmer effort to explicitly manage the data and
computation between CPUs and GPUs. Meanwhile, the limited GPU
memory capacity prevents the deployment of applications with large
memory footprints that exceed the GPU memory capacity. As a result,
GPUs are difficult to employ and manage for complicated modern
applications with large memory footprints. Recently, GPU vendors
have proposed unified virtual memory (UVM) with demand paging
to ease GPU programming. This feature is especially beneficial for
executing complex applications whose memory footprints exceed the
modern GPU memory capacity.

While UVM is promising, it introduces an expensive address
translation process, which comprises hierarchical TLB lookup and
multilevel page table walk. Prior works have investigated TLB
optimizations from different aspects, and we summarize these related
works in Table I. However, these techniques are unsuitable for GPU
per-SM private L1 TLBs and fail to leverage the translation reuses
across thread blocks. First, TLB clustering, range TLB, and eager
paging rely on continuous and regular page accesses to improve
the TLB reach. That is, these techniques rely on linear and stride
memory page accesses to merge the translation requests into fewer
TLB entries. However, these linear and stride memory access patterns
are not always observable in general-purpose applications dealing
with irregular data structures (e.g., graph processing applications).
Second, while employing huge pages can enlarge the TLB reach, it
suffers from severe intra-page fragmentation [1], [2]. We also evaluate
our approach with huge pages in Section V. Third, speculative TLB
relies on predictable access patterns to ensure prediction accuracy.
Finally, while TLB probe and least-TLB work for irregular access

TABLE I
COMPARISON WITH PRIOR TECHNIQUES.

Techniques Irregular No internal Stride Suitable in Reuse at
Access fragmentation Access GPU L1 TB level

TLB clustering [3], [4] ✗ ✓ ✗ ✗ ✗
TLB range [5]–[7] ✗ ✓ ✗ ✗ ✗
Huge page [1], [2], [8] ✗ ✗ ✓ ✓ ✗
Eager paging [9], [10] ✗ ✗ ✓ ✗ ✗
Speculative TLB [11] ✗ ✓ ✓ ✗ ✗
TLB probe [12] ✗ ✓ ✓ ✓ ✗
Least-TLB [13] ✓ ✓ ✓ ✗ ✗
Our approach ✓ ✓ ✓ ✓ ✓

patterns, they are not suitable for GPU L1 TLB due to L1 TLB
being on the execution critical path. The overheads in the least-TLB
and TLB probes can significantly degrade the execution performance.
Moreover, none of the prior works have investigated the translation
reuses at TB granularity and addressed the question of how to coor-
dinate TLB designs and TB management to leverage the translation
reuses.

In this paper, we set to leverage the translation reuse opportunities
and improve the L1 TLB hit rates. We argue that “translation locality”
is even more important compared to conventional data reuse in
the UVM execution. Specifically, we first conduct a comprehensive
characterization to quantify the translation reuses at TB granularity.
We observe that there exist substantial translation reuses within each
TB. We also notice that most of the reuses show large reuse distances
that exceed the L1 TLB reach. Based on our observation, we propose
translation reuse-aware TB scheduling together with dynamic TLB
partitioning and sharing to effectively reduce the reuse distances. It is
important to emphasize that our approach does not increase the TLB
sizes nor throttle the degree of GPU parallelism. This paper makes
the following contributions:

• We conduct a thorough characterization to quantify the trans-
lation reuses at GPU TB granularity. We observe that most of
the TBs show significant intra-TB reuses rather than inter-TB
reuses. We further investigate the intra-TB reuse distances and
find most of them exceed the GPU L1 TLB reach due to inter-
TB interference, leading to poor L1 TLB performance.

• We propose two simple-yet-effective optimizations to mitigate
the L1 TLB thrashing. First, we implement translation reuse-
aware TB scheduling. That is, instead of baseline round-robin
TB scheduling, we schedule TBs to the SMs that have low
chances of thrashing. Second, we propose TLB partitioning
based on TB ids to mitigate the inter-TB interference. We also
implement dynamic set sharing to accommodate those TBs that
have translation sharing.

• We use a cycle-accurate CPU-GPU simulator to evaluate our
proposal on 10 benchmarks from various suites. The exper-
imental results show that the proposed scheduler and TLB
management effectively improve the L1 TLB hit rate without
increasing the TLB capacity. This improvement translates to, on



average, 12.5% execution time reduction.

II. BACKGROUND
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Fig. 1. Baseline GPU Architecture.

Figure 1 depicts the baseline GPU architecture comprising multiple
streaming multiprocessors (SMs) and memory partitions. Each SM
has its own private L1 TLB and L1 cache. L2 TLB and L2 data
cache are shared across all SMs and distributed across the memory
partitions. SMs are connected to memory partitions via an on-chip
interconnection. The figure also illustrates the address translation pro-
cess under unified virtual memory (UVM). Specifically, the memory
requests generated by each thread are first coalesced by the GPU
memory coalescing unit (➊). The L1 data cache lookup happens in
parallel with the L1 TLB lookup in a virtually indexed physically
tagged (VIPT) cache-TLB design. If the translation is present in the
L1 TLB, a TLB hit is returned and the physical page number (PPN)
is used to compare with the tags in the L1 cache (➋). Otherwise,
if the translation misses in the L1 TLB, the request is forwarded to
the shared L2 TLB (➌). If it further misses in the L2 TLB, the page
table walker is triggered (➍). After the physical address is retrieved
by walking the page table, the translation is populated to the shared
L2 TLB (➎) and further returned to L1 TLB (➏). In a typical GPU
application, a kernel is a computation block that executes on GPU.
A kernel consists of multiple thread blocks (TBs). When a kernel is
launched, the GPU TB scheduler selects and maps the TBs to SMs in
a round-robin fashion. If an SM does not have enough resources (e.g.,
number of registers and number of threads) to accommodate a TB, the
TB scheduler will skip that SM and find the next one with sufficient
resources. It is possible that several TBs are mapped to the same SM
and executed concurrently. Once scheduled, the TBs cannot migrate
to other SMs. All the threads within a TB are sub-grouped into a warp
with 32 threads. Threads within a warp share the program counter
and execute in a lock-step fashion. In the baseline architecture, we
employ the Greedy-then-Oldest (GTO) warp scheduler.

III. MOTIVATION AND CHARACTERIZATION

A. Benchmarks and Experimental Setup

We use 10 benchmarks from various GPU benchmark suites includ-
ing Rodinia [14], poly-bench [15], and pannotia [16]. Table II lists
all the benchmarks. We use the largest input sizes that are available
in the benchmark suites. For bfs, color, mis, and pagerank,
we use the author citation graph (coPapersCiteseer.graph)
as inputs [17]. Table II also lists the memory footprints in the last
column. It is important to mention that the benchmarks listed in the
table are the versions with UVM support. We obtain these UVM-
enabled versions from the gem5-gpu [18] repository.

We use a cycle-accurate simulation framework, gem5-gpu [18], to
conduct our characterization as well as evaluate our proposed opti-
mizations. Table III summarizes the detailed simulation configuration.
Since the TLB configuration is not publicly available, we use the
configuration parameters from prior published works [1], [19], [20].

TABLE II
LIST OF BENCHMARKS.

Application Suite Benchmark Input Memory
footprint

Breadth-First Search Rodinia [14] bfs citation 107.48GB
Graph coloring centrality Pannitia [16] color citation 12.89GB
Maximal independent set Pannitia [16] mis citation 8.44GB
Needleman-Wunsch Rodinia [14] nw suite 0.72GB
Page rank Pannitia [16] pagerank citation 14.70GB
3D Convolution PolyBench [15] 3dconv suite 21.32GB
Matrix Transpose and PolyBench [15] atax suite 4.51GB
Vector Multiplication
BiCG Sub Kernel of PolyBench [15] bicg suite 3.76GB
BiCGStab Linear Solver
Matrix Multiply PolyBench [15] gemm suite 18.28GB
Matrix Vector PolyBench [15] mvt suite 4.38GB
Product and Transpose

TABLE III
BASELINE CONFIGURATION.

Module Configuration
GPU config 16 SMs, 1400MHz, 5-stage pipeline
Resource 48KB Shared Memory, 64KB Register File,
per SM Max.2048 threads (64 warps, 32 threads/warp)

16 KB, 4-way L1, 12KB 24-way Texture Cache, 8KB 2-way
Constant cache, 2KB 4-way L1 I-cache, 128B cacheline

L2 unified 128KB/Memory Partition, 1536KB Total Size,
cache 128B cacheline, 8-way associativity
Schedule Greedy-Then-Oldest (GTO) dual warp schedule

Round-Robin (RR) TB scheduler
TLB L1: 64 entries, 4-way, 1-cycle lookup latency, SM private
Config L2: 512 entries, 16-way, 10-cycle lookup latency, SMs shared
Page table walk 8 shared page table walker, 500-cycle latency

B. Motivation
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Fig. 2. L1 TLB hit rates of two different L1 TLB capacities.

We start with the GPU L1 TLB hit rates. The first bar in Figure 2
shows the L1 TLB hit rates of all benchmarks in the baseline
execution. For a given benchmark, the result in the figure is the
average hit rate across all SMs as the L1 TLBs are SM private. As one
can observe, most of the GPU benchmarks suffer poor L1 TLB hit
rates. This is because a large number of memory pages are accessed
intensively due to the GPU parallel execution. Since the private L1
TLB has limited capacity (i.e., 64 entries per SM), severe contention
heavily thrashes the L1 TLB. Figure 2 also shows the results when
we enlarge L1 TLB capacity from 64 to 256 entries while keeping
the associativity the same. It can be observed that many benchmarks
benefit from larger L1 TLB capacity. Note that, nw has a low hit
rate due to i) a significant amount of cold misses and ii) irregular
data access patterns during execution. While adopting a larger TLB
improves the hit rates, it is not a scalable approach and also increases
both the TLB hit time (i.e., latency) and the chip die size. Therefore,
we focus on optimizations that do not increase the TLB capacity.

C. Translation Reuse

In this paper, we target to leverage translation reuses to improve
the “translation locality” in L1 TLBs. We first quantify the reuse
potential at inter-TB and intra-TB levels. Then we study the reuse
distances to reveal that inter-TB interference is the main factor that
hurt the L1 TLB hit rates.

Figure 3 and Figure 4 show the quantification results. We focus
on TB as it is the granularity of computations that schedule on each
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Fig. 3. Inter-TB translation reuses.
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Fig. 4. Intra-TB translation reuses.

SM. The y-axis in the figures represents the percentage of the total
number of TBs. We divide the reuse intensity into 5 bins (b1, b2, · · · ,
b5) with 20% increment as shown in the figure legend. That is, b1
indicates that there are less than 20% of the total translations being
reused, and b2 indicates there are more than 20% but less than 40%
of the total translation being reused. With that notion, x% from y-axis
with by in the legend indicates that there are x% of the total number
of TBs that have more than (y-1)×20% but less than y×20% of their
translations being reused at least once. For inter-TB reuse, a TB pair
is counted in a particular bin if the translation reuse between two
TBs falls into that bin. For intra-TB reuse, a TB is counted instead
of a TB pair. To be more concrete, we calculate the translation reuse
intensity based on the following equation:

Rc1−c2 =
size(x, x ∈ Tc1 | x ∈ uniq(Tc1) ∩ uniq(Tc2))

size(Tc1)
. (1)

where c1 and c2 represent two different TBs, and Tc1 and Tc2

represent the total number of address translations issued from c1
and c2, respectively. For instance, if the application kernel has 10
TBs, we exhaustively calculate the intensity of all possible TB pairs
and then plot them in the bins as shown in Figure 3. For intra-TB
characterization, we calculate the reuse using the same equation while
keeping c1 and c2 the same TB. From Figure 3 and Figure 4, one
can make the following observations.
Observation 1. Comparing the inter-TB and intra-TB reuses, most
benchmarks show substantial intra-TB reuses rather than inter-TB
reuses. For example, bfs has 87% TBs in b1 for inter-TB while 82%
TBs in b5 for intra-TB reuse. This is because TBs comprise several
warps, and the threads in warps work on different data elements in
the SIMD execution. Therefore, it is unlikely that different TBs will
access the same 4KB page, unless there existed intrinsic data reuses
in the application algorithm (e.g., mapping adjacent TBs to the input
matrices in gemm).
Observation 2. For benchmarks atax, bicg, gemm, and mvt,
there are sizable portions of TBs that have inter-TB translation reuse
between 30% to 50%. This is because these benchmarks operate
on matrices and vectors that consist of substantial data reuses.
For example, the adjacent TBs holding adjacent portions of the
matrices are likely to have access to common pages. Thus, the
reuse of translations between TBs is also higher compared to other
benchmarks.
Observation 3. For benchmarks bfs, color, mis, nw, pagerank,
and 3dconv, their intra-TB reuses show varied intensities. For
instance, nw shows 51% TBs in bin b2 and 48% TBs in bin b3,
whereas bfs shows 18% TBs in bin b4 and 82% TBs in bin B5. The
reason behind this is that most of these benchmarks are dealing with
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Fig. 5. Intra-TB translation reuse distance.
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Fig. 6. Intra-TB translation reuse distance running one TB at a time (i.e.,
inter-TB interference has been removed).

irregular graphs, causing discrepancies in computation and memory
accesses between TBs. Therefore, some TBs may heavily access a set
of pages repetitively while other TBs do not have such characteristics.
Takeaway. From our translation reuse quantification at TB granular-
ity, we summarize that, while for some benchmarks, there are sizable
inter-TB translation reuses, the majority of TBs in the benchmarks
show significant intra-TB translation reuses rather than inter-TB
reuses. For some benchmarks, those reused translations are accessed
multiple times during execution, bringing the potential for L1 TLB
hits if the translation resides in the L1 TLB by the time it is being
reused.

D. Translation Reuse Distance

With substantial intra-TB translation reuse, we next conduct trans-
lation reuse distance analysis to investigate whether the L1 TLB can
capture these reuses during execution. We define translation reuse
distance as the number of unique translations between two memory
accesses to the same page. We only show the distance analysis for
intra-TB since a significant amount of translation reuses are from
intra-TB. Figure 5 shows the cumulative distribution function (CDF)
of intra-TB reuse distance. The x-axis represents the translation reuse
distances in the power of 2 (starting from 3) and the y-axis represents
the CDF. We also mark the capacity misses of L1 TLB. Reuses with
distances larger than L1 TLB capacity will certainly miss the L1
TLB. We make two main observations:
Observation 1. The 64-entry L1 TLB fails to capture most intra-
TB translation reuses. In particular, for benchmarks bfs, mis, nw,
atax, bicg, and mvt, most of the intra-TB reuses have distances
exceed the L1 TLB capacity (i.e., larger than 26), leading to poor L1
TLB hit rates as we discussed earlier in Figure 2.
Observation 2. As most TBs show a significant amount of translation
reuses within TBs rather than across TBs, concurrent execution of
TBs on the same SM may cause severe interference and enlarge
the translation reuse distances. To verify, we show the intra-TB
reuse distance when inter-TB interference is removed (Figure 6). We
achieve this by allowing only one TB to run at a time. Compared
with Figure 5, one can see that most of the benchmarks show reduced
intra-TB reuse distances.
Takeaway. Our characterization reveals that, while there exist sub-
stantial intra-TB translation reuses, the reuse distances are generally
large to yield good L1 TLB performance due to the inter-TB
interference. Reducing the interference can effectively reduce the
reuse distances, which can potentially translate to an improvement
in the TLB hit rates.



IV. PROPOSED OPTIMIZATION

Our goal. The goal of this paper is to improve the GPU L1 TLB
hit rate by leveraging intra-TB translation reuses. To this end, we
propose i) TLB thrashing-aware TB scheduling that mitigates the
inter-TB interference to effectively reduce the reuse distances, ii) TLB
partitioning that isolates the translations oriented from different TBs
to reduce TLB thrashing, and iii) dynamic and automatic TLB set
sharing that accommodates the scenarios where adjacent TBs share
translations.

A. Thrashing aware TB Scheduling

TB 

scheduling

L1 TLB 

thrashing?

low Enough 

resource?

Yes Schedule the 

TB on the SM

Choose next SM

high
No

Fig. 7. TLB-aware TB scheduling.

We first propose thrashing-aware TB scheduling. Figure 7 depicts
the scheduling algorithm. Specifically, we enhance the baseline
round-robin TB schedule with the capability to probe the instant L1
TLB miss rate. This is based on the intuition that different SMs
may have different L1 TLB hit rates because of the computation
discrepancy among the TBs. This is particularly normal in graph
applications where the graph structure can cause imbalanced memory
accesses among TBs. We implement a hardware table in the TB
scheduler, the table consists of 16 entries for the 16 SMs and each
entry has two fields <TLBhits, TLBtotal>. Each SM is responsible
for updating the table based on its TLB accessing statistics. The
table is similar to the structure in prior work that is used to capture
cache hit rates [21]. Whenever a new TB is to be scheduled, the
scheduler first checks whether the candidate SM has a low TLB miss
rate compared to other SMs. If so, it further checks the resource
availability. Otherwise, the scheduler skips the SM and tries to find
another SM with a low TLB miss rate. If the schedule cannot find an
SM with low TLB miss rates, it falls back to the default scheduling.
Note that our scheduling does not throttle the parallelism of GPU
execution. That is, our approach does not limit the number of TBs
scheduled on the SM if there are enough available resources to
accommodate new TBs. While throttling can reduce the contention
as demonstrated by prior works [22], our approach can be extended
to work with TB throttling to further reduce the TLB thrashing.

B. Translation aware TLB Partitioning

Though the thrashing-aware TB scheduling tries to balance the
number of translations across SMs and avoids over-subscription of
particular SMs, it is still possible that the TBs scheduled on the same
SM interfere with each other, enlarging intra-TB translation reuse
distances. To address this problem, we propose L1 TLB partitioning
based on the TBid instead of based on the address index bits. To
be more specific, during GPU execution, each TB is labeled with a
hardware TBid once it has been scheduled to an SM. The TBids are
unique for the TBs running on the same SMs. When a TB finishes
execution and relinquishes the resources, the TBid is also freed for the
next TB scheduled. In order to use TBid as the index to TLB sets, we
also modify the TLB entry to store the entire VPN instead of just the
tag. Figure 8 shows the proposed L1 TLB partitioning. Specifically,
a virtual address is partitioned into VPN and page offset. Instead
of using index bits to index the TLB sets, we leverage the TBid to
perform the indexing. For instance, given an L1 TLB with 64 entries
and 4-way associativity, if there are a total of 16 TBs scheduled on
the SM, each TB will be associated with one set and the TBid is
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Fig. 8. Proposed L1 TLB partitioning.

used to index the corresponding set. On the other hand, if there are
4 TBs scheduled on the SM, each TB will be associated with 4 sets.
In the TLB lookup process, the TBid is used to index the TLB sets
(①). Then, the VPNs from all the TLB ways are compared with the
VPN from the virtual address (②). If the comparison is successful,
the corresponding PPN is retrieved from TLB and is concatenated
with the page offset to form a valid physical address. Similarly, in
the TLB insertion process, the TBid is used to index the candidate set
for the translation. If the sets are full, the LRU algorithm is triggered
for replacement.

We want to discuss three important points in our design. First, the
TLB partitioning proposed in this work is based on the hardware
TBid to index the TLB set, which guarantees that the concurrent
running TBs on the same SM have different TBids. The TBid can be
reused by subsequently scheduled TBs. This avoids expensive TLB
flushing upon each TB’s finish and allows us to keep the TLB entries
for potential inter-TB reuse if there is any. Second, the number of
TBs that can run concurrently on each SM is determined at compile
time (by calculating the threads, registers, and shared memory used
by the TBs). Once scheduled, the TB cannot migrate to other SMs.
As a result, for different applications, the number of TBs per SM
can be different. Our TBid guided TLB partitioning is flexible to
accommodate different application scenarios because we use the TBid

to perform indexing instead of hard partitioning the TLB into different
segments. Third, using TBid to index the set involves overheads in
the TLB lookup. Specifically, if a TBid is mapped with two sets, each
set has to perform the lookup, doubling the lookup time if there are
no additional compactors and multiplexes. In the cases when many
sets are mapped to a few TBs, the lookup overhead is large. However,
since the L1 TLB only has 16 sets and most of the SMs have more
than 10 TBs running concurrently, the overhead is not significant. In
our evaluation, we include the overheads in our results.

While TLB partitioning alleviates the inter-TB interference, it may
cause two problems that can affect the TLB hit rates. First, it can
introduce redundant entries. For example, if TBi and TBi+1 both
access the same memory page, the same translation might be residing
in different sets if TBi and TBi+1 are not sharing the sets due to
TBid based set indexing. Second, it can cause imbalanced numbers
of translations in different TLB sets. Specifically, some sets might get
oversubscribed and experience higher miss rates, while others might
be under-utilized due to fewer requests. To solve these two problems,
we enhance our design with dynamic and automatic adjacent TLB set
sharing. As shown in Figure 8 (④), we design sharing flags held by
a sharing register in the hardware. The sharing flag is a 1-bit flag for
each TB and is used to indicate whether the adjacent TBs should share
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Fig. 9. Sharing of sets among adjacent TBs.

their TLB sets or not. Each TB has its own sharing flag indicating
the sharing status with its neighboring TB. As the maximum number
of concurrent running TB is 16 due to the hardware limitation [23],
the total number of flags is 16 bits. Figure 9 shows an example
of 4 TBs and 8 TLB sets. As shown in Figure 9(a), initially, the
values of all sharing flags are set to 0, indicating that the TBid to the
TLB set mapping is exclusive and there is no sharing between TBs1.
Figure 9(b) shows when the sharing flag of the first TB is equal to 1.
As one can observe, TB1 shares the TLB sets indexed to TB2. Sharing
the sets among multiple TBs can reduce the thrashing of particular
sets and balance the number of translations across multiple sets. This
is particularly useful for benchmarks where the TBs have inter-TB
reuses (e.g., the adjacent TB to matrices mapping in gemm). Now,
an important question is when to set and when to reset the sharing
flag. In our current design, the initial sharing flags are set to 0. When
a TLB set is oversubscribed and one entry needs to be evicted for
a replacement, we check the adjacent TLB set to see whether it has
an empty slot. If so, we put the evicted entry in the adjacent set. If
the set is owned by another TB, the sharing flag is set to 1 in the
sharing register. During TLB lookup, we also check the sharing value
to determine which sets need to be searched for the requested virtual
address. We reset the sharing flag of a particular TLB set when a TB
that is currently indexed to that TLB set finishes its execution and
relinquishes its occupied resource.

We want to emphasize two aspects of the TLB set sharing design
in our approach. First, our current design uses a 1-bit flag to indicate
the sharing status. One may choose to implement a counter for the
sharing and explore an appropriate threshold for the sharing. This
may capture the inter-TB translation sharing more accurately and
perform better for particular applications. However, we found that the
1-bit flag is good enough to capture the sharing in the benchmarks
we evaluated. We leave the counter and threshold exploration to our
future work with other applications (e.g., machine learning and deep
learning applications). Second, our current design only considers set
sharing of adjacent TBs instead of other possible sharing patterns
(e.g., all TB to all TB sharing). In all-to-all sharing, we will have
to track the sharing TBids, which introduces additional bookkeeping
hardware and TBid lookup latency. We found the adjacent sharing
performs well as most of the inter-TB sharing comes from adjacent
TBs, as observed in our characterization. Note that, we only allow the
sharing value to be 0 and 1 to control the involved lookup overheads.
We found that this is good enough to capture the sharing and avoid
the imbalanced number of translations among sets.
Hardware Overheads. The main hardware overheads include the
TLB status table in the TB scheduler and the enlarged TLB to store
the whole VPN. The TLB status table requires 136 bytes2, which is

1Note that, in our baseline setup, we have 16 L1 TLB sets and the maximum
number TBs can be scheduled on each SM is 16. That is, in the initial
setting, there does not exist a scenario where two TBs share sets. However, for
different architectures, when the scheduled number of TBs per SM is larger
than the number of TLB sets, multiple TBs can share the same sets at the
initiation.

2The table has 16 entries, each entry consists of 4-bit SMid and two 32-bit
cycle counters for the TLB hits and total requests.

negligible to the L1 TLB size.

V. EXPERIMENTAL EVALUATION
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Fig. 11. Execution time normalized to the baseline. The lower the better.

In this section, we experimentally evaluate our proposed optimiza-
tions. We use the same benchmarks in Table II and the baseline
simulation configuration is given in Table III. We show the results of
TLB partitioning only and partitioning plus set sharing. Note that,
in both results, we have enabled the translation reuse aware TB
scheduling to balance the number of translations among different
SMs. Figure 10 shows the L1 TLB hit rates and Figure 11 shows
the execution time normalized to baseline. We make the following
main observations. First, scheduling reduces the execution time by an
average of 2.3%. Though the improvement is marginal, the scheduling
enlarges the potential for subsequent TLB management. Second,
simple partitioning of the TLB degrades the L1 TLB hit rates and
performance of most benchmarks. The average (geomean) execution
time increases by 14.3% with simply TLB partitioning compared to
the baseline execution. This is because the number of available entries
to each TB is reduced after partitioning. However, for benchmarks
atax, bicg, nw, and mvt, partitioning improves the L1 TLB
rates as well as the overall application performance. This is because
most of these benchmarks suffer from severe inter-TB interference,
and partitioning isolated the translations from different TBs, hence
reducing the interference. Third, TLB set sharing effectively improves
the L1 TLB hit rates as well as reduces the execution time (shown as
the last bar in both figures). The average execution time reduces
by 12.5% over 10 benchmarks evaluated. This indicates that the
proposed set sharing is able to improve the utilization of each TLB
set while keeping the inter-TB interference alleviated. Fourth, for
benchmarks that already have high TLB hit rates (e.g., gemm), our
proposed approaches do not degrade the TLB hit rates. Finally, for
nw, the improved L1 TLB hit rate does not translate to performance
improvement. This is because that nw is an irregular application and
is compute-bound. Thus, the scheduler can effectively hide part of
the translation overheads.

Large page: Our study so far employs 4KB page size in both
the baseline execution and our approach. We also conduct a study
employing huge pages (i.e., 2MB page) instead of 4KB pages. Results
indicate that huge pages indeed significantly improve the L1 TLB hit
rates, especially for matrix operation-centric applications (e.g., gemm
and mvt). We also test our optimizations with huge pages, and it
brings an average of 2.13% execution time reduction. This indicates
that our approach can be combined with huge pages, even though the
saving is less compared to 4KB pages.

Comparison with the state-of-the-art: We next compare our
approach with a recent work that employs compression to enlarge
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Fig. 12. Comparison against recent TLB compression work [24]. Speedup
is calculated by our approach plus TLB compression normalized to the TLB
compression work on L1 TLB.

the TLB reach [24]. The compression technique present in [24] relies
on continuous or regular stride access patterns to compress multiple
TLB entries into one entry such that more translations can be stored
in the TLB. Despite the compression and decompression overheads
that introduce latencies on the execution critical path on L1 TLB
lookup, we implement the compression process and combine it with
our approach. Figure 12 shows the speedup when our approach is
combined with TLB compression normalized to the TLB compression
work. As one can observe, our approach brings an additional 10.4%
speedup on top of the TLB compression work. That is, our approach
is complementary to the TLB compression and can bring further
performance improvements.

VI. RELATED WORK

To optimize the address translation, several prior studies [8], [11]
improved TLB hit rates by speculative techniques to infer the physical
page number of a translation that misses in the TLBs. Cox et al.
[25] proposed MIX TLBs, which supported multiple page sizes
by coalescing large pages in a single TLB entry. An OS support,
named translation ranger was presented by Yan et al. [5] to enable
continuity-aware TLBs in order to afford fewer translation overheads.
Compared to all the prior efforts, we are the first to quantify the
translation reuses in the GPU context and propose optimizations
that leverage the translation reuses to effectively improve the GPU
L1 TLB hit rate. Many prior works rely on data access locality
(e.g., continuity) to reduce the TLB thrashing, whereas our proposed
approach seeks scheduling solutions to mitigate the thrashing problem
and does not rely on specific access patterns. Moreover, our approach
is complementary to prior works and can be combined to further
improve the TLB performance.

VII. CONCLUSION

Unified virtual memory is a promising feature that simplifies
programming on CPU-GPU heterogeneous computing platforms.
However, the incurred translation process introduces significant over-
heads to GPU execution, especially due to poor GPU L1 TLB
hit rates. In this paper, we leverage translation reuse to alleviate
the TLB thrashing. We thoroughly characterize various benchmarks
and quantify the translation reuse and reuse distances among GPU
TBs. We summarize several observations and insights from our
characterization and propose simple yet effective TLB partitioning
and sharing based on TBids to leverage the translation reuse as
well as to alleviate the TLB thrashing. Experimental results have
shown that our proposed approach can effectively improve the L1
TLB hit rate without compromising the degree of GPU parallelism.
This TLB hit rate increase translates to an average 12.5% execution
time reduction. For future work, we aim to study translation reuse
at warp granularity and explore potential translation reuse-aware
warp scheduling policies. We expect that the warp scheduling is

complementary to the approach proposed in this paper and can be
integrated to further improve the address translation performance in
a UVM-based CPU-GPU heterogeneous system.
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