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ABSTRACT
The widespread popularity of deep neural networks (DNNs) has
made it an important workload in modern datacenters. Training
DNNs is both computation-intensive and memory-intensive. While
prior works focus on training parallelization (e.g., data parallelism
and model parallelism) and model compression schemes (e.g., prun-
ing and quantization) to reduce the training time, choosing an
appropriate data layout for input feature maps also plays an im-
portant role and is considered to be orthogonal to parallelization
and compression in delivering the overall training performance.
However, finding an optimal data layout is non-trivial since the
preferred data layout varies depending on different DNN models as
well as different pruning schemes that are applied. In this paper, we
propose a simple-yet-effective data layout arbitration framework
that automatically picks up the beneficial data layout for different
DNNs under different pruning schemes. The proposed framework
is built upon a formulated cache estimation model. Experimental
results indicate that our approach is always able to select the most
beneficial data layout and achieves the average training perfor-
mance improvement with 14.3% and 3.1% compared to uniformly
using two popular data layouts.
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1 INTRODUCTION
In recent years, Deep Neural Networks (DNNs) gain momentum in
a wide spectrum of applications, ranging from image classification
to natural language processing. However, training DNN models
is very time-consuming and challenging on modern computing
platforms due to its significant computation intensity and mem-
ory intensity. For example, BERT training requires 81 hours on 16
Google TPUs [6] and it takes more than 40 days to train an AlphaGo
Zero system [31]. Consequently, training DNN models is widely
deployed in datacenters and becomes a significant fraction of the
datacenter workload. However, as the success of the state-of-the-art
DNNmodels relies on a large number of model parameters (e.g., lay-
ers) and batch sizes, model training remains very time-consuming
and is one of the major bottlenecks that prevent the wide adoption
of personalized DNNs.

To reduce training time, prior works have investigated paral-
lelization [17, 25] (e.g., data parallelism and model parallelism) and
model compression [3] (e.g., pruning and quantization) for DNN
training on datacenters. In particular, pruning effectively accel-
erates training performance with negligible impact on training
accuracy. The widely adopted pruning schemes include the shape
pattern-based shape pruning, filter pruning, channel pruning, and
kernel pruning [20, 27, 32]. While those optimizations effectively
reduce the training time, choosing an appropriate data layout of
input feature maps is also important and has received little atten-
tion in the literature. There are two popular layouts: NCHW and
NHWC, where N represents the batch size, C represents the num-
ber of Channels, H represents the height, andW represents the
width (discussed in detail in Section 2). In general, NHWC is known
to provide better performance on CPUs because of vectorization,
whereas NCHW is better on GPUs due to expensive reduction oper-
ations [1, 29]. However, in this paper, we find that the preferred data
layout varies when different pruning schemes have been applied.
This is because of the poor data locality exhibited in caches after
pruning. To be more specific, caches are organized at cacheline
granularity and the capability to take the spatial locality within
cachelines can significantly affect the performance. After pruning
the weights, certain portions of the values in the feature maps are
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Table 1: Parameters in cache model.
Symbol Description Symbol Description

N Batch size C Number of Channels
H Height of input fmap W Width of input fmap
H’ Height of output fmap W’ Width of output fmap
R Height of filter S Width of filter

Stride Filters stride l Cacheline size
n Number of cachelines cCAP Cache capacity

not used and can be skipped without loading to the cache. However,
since caches are managed by hardware in cacheline granularity,
those skipped values may mix with other values in the same cache-
lines, leading to cache thrashing and under-utilization of cachelines.
On the other hand, a different layout may have those skipped values
clustered in the same cachelines such that those cachelines are not
accessed and are not loaded to the cache, reducing the probability
of cache thrashing.

Motivated by this observation, in the paper, we propose a data
layout arbitration framework that automatically picks up the benefi-
cial data layout for training DNNs under different pruning schemes.
The framework is built upon a proposed cache model that estimates
the cache performance under different data layouts and pruning
schemes. The cache model uses static parameters (e.g., input feature
map dimensions, filter dimension, and pruning pattern) without
the need of profiling, nor introducing any runtime overheads. The
main contributions of this paper are as follows:
• It investigates the training execution time under different data
layouts and different pruning schemes. The observation is that
the preferred data layout can be different for different DNNs, even
the same DNN with different pruning schemes being applied.

• It proposes a cache estimation model that is able to effectively
predict the cache performance under different execution scenar-
ios. The cache model undertakes the DNN model parameters, the
data layout, and the pruning strategy to estimate the cache perfor-
mance. The cache model is completely static without any runtime
overheads and does not require any profiling.

• It implements an auto-arbitration framework based on the pro-
posed cache model. The framework automatically selects the ben-
eficial data layout to avoid loading pruned parameters into the
cache, achieving significant training performance improvement
without compromising the model accuracy.

• It evaluates the proposed work on 5 DNN models with 4 differ-
ent pruning strategies. Experimental results indicate that our ap-
proach accurately selects the optimal layout without the need of
trial-and-error searching. It achieves training speedup with an
average of 14.3% and 3.1%, comparing to uniformly using NHWC
layout and NCHW layout, respectively.

2 BACKGROUND AND MOTIVATION
2.1 Data Layouts
Figure 1 shows the basics of one convolutional layer and different
data layouts of feature maps. We also provide the descriptions of
symbols used in the paper in Table 1. In Figure 1(a), a layer consists
of N input feature maps and M filter weights1. H represents the
number of pixels at the vertical direction, whereasW represents
the number of pixels at the horizontal direction. C indicates the

1In this paper, we use the term “filter” and “weight” interchangeably.

number of channels. For the convolution operations during training,
each filter is applied to each input feature map in a sliding fashion
(with a fixed stride) from left to right and top to bottom. For each
convolution operation, the values calculated in different channels
are summed together to form a corresponding value in the output
feature map. The four-dimensional feature maps are stored linearly
in memory. The data layout can be configured to either NCHW or
NHWC. Figures 1(b) and (c) show these two different data layouts.
We also use the green box the denote the cachelines. Specifically,
in NCHW format, subsequent values in theW dimension reside in
the same and continuous cachelines sinceW is the fastest variance
dimension. In contrast, in NHWC format, subsequent values in the
C dimension reside in the same and continuous cachelines as C is
the fastest variance dimension.

2.2 Pruning Strategies
Pruning is a promising approach for DNNs compression and accel-
eration by eliminating redundant/unnecessary model parameters
with negligible accuracy drop. In this paper, we consider four types
of state-of-the-art structured pruning schemes: shape pruning, fil-
ter pruning, channel pruning, and kernel pruning [11, 12, 28, 30].
In shape pruning, certain portions of the filters are pruned. Note
that, the portions are identical across all the filters. For example,
in Figure 2(a), the bottom-left and the top-right value in the first
channel, and the middle-right of the last channel for all filters are
pruned. Figure 2(a) also shows the 2D flat weight matrix format
representation of the filters after pruning. Figures 2(b) and (c) show
filter pruning and channel pruning which prunes the entire fil-
ter(s)/channel(s). In the weight matrix format representation, filter
pruning corresponds to reducing one row of the weight matrix
and it is also termed as row pruning. Accordingly, channel prun-
ing corresponds to reducing multiple consecutive columns in the
weight matrix format. Finally, in Figure 2(d), we show kernel prun-
ing. Unlike channel pruning and filter pruning, kernel pruning
does prunes each filter separately. That is, it does not maintain a
uniform pattern across the filters (as can be observed from the 2D
weight matrix). The key advantage of structured pruning is that a
full matrix will be maintained with dimension reduction, thereby
facilitating hardware acceleration [27, 28].

2.3 Motivation
Although a general sense is that the NHWC provides better perfor-
mance on CPUs, this may no longer hold true when the DNNmodel
is pruned during training. This is because when some parameters
are pruned, certain portions of the values in the feature maps will
not be used in the computation. These values can be potentially
skipped without loading to the cache to reduce the cache thrash-
ing. However, since caches are managed at cacheline granularity,
those skipped values may mix with other values in the same cache-
lines. As a result, those skipped values are still loaded to the cache,
introducing cache thrashing. Fortunately, a different data layout
can help mitigate this problem. Specifically, a different layout can
have those skipped values clustered in the same cachelines such
that those cachelines are not accessed and are not loaded to the
cache, reducing the probability of cache thrashing. This observa-
tion motivates us to explore a layout arbitration framework that
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(a) Convolution computation (b) NCHW feature map 2D (c) NHWC feature map 2D

Figure 1: Convolution in DNNs and two types of data layouts of the feature maps.

(c) Channel pruning

(a) Shape pruning

(d) Kernel pruning

(b) Filter pruning

Figure 2: Four different types of pruning schemes.

automatically picks up the beneficial data layout for DNNs when
different pruning schemes are applied.

3 OUR APPROACH
Our goal: The goal of this paper is to automatically determine the
optimal data layout between NCHW and NHWC for pruned DNN
training. There are two challenges to achieving the goal. First, the
preferred data layout varies according to the type of DNN models
and the pruning strategy applied. It requires a comprehensivemodel
to estimates the performance benefits when different data layouts
are applied during training. Second, pruning strategies are generally
applied to the model parameters (i.e., weights). It is not intuitive
how the pruned weights affect the data layout of feature maps.
Motivated by these challenges, in this section, we propose a cache
model that undertakes the static training configurations (i.e., input
feature map parameters, pruning schemes, and pruning rate) to
determine the beneficial data layout between NCHW and NHWC.
All the symbols used in our cache model are listed in Table 1.

3.1 Overview
Figure 3 shows a high-level workflow of our proposed data layout
arbitration framework. Overall, the cache model (i.e., predictor)
uses static parameters (e.g., input feature map dimensions, filter
dimension, pruning pattern, and hardware configuration) as inputs
to estimate the cache performance under different data layouts and
pruning schemes. This cache model is statically offline without the
need for profiling, nor does it introduce any runtime overheads.
The cache model helps to find the beneficial data layout. Taking the

Static training configurations

Input parameters

Pruning schemes

Pruning rate

Hardware 
configurations

…

Cache model
（Predictor)

NCHW data
layout training

NHWC data
layout training

offline

Figure 3: Overview of the proposed framework.
cache model prediction outputs as the configuration for pruned-
DNN training, our framework automatically identifies the pruned
parameters based on the index, avoiding loading the pruned data
to cache and unnecessary computations. In the following section,
we will introduce our cache model in detail.

3.2 Cache Model
3.2.1 Total Number of Memory Accesses. To estimate the cache
miss rate, we first need to calculate the total number of memory
requests during the course of convolution computation. Specifically,
each value in the output feature map involves convolution of the
input feature map and the filter. Let us assume the output feature
map dimension is H

′

height andW
′

width, we have

Output Heiдht (Hfi) =
⌊

H − R
Str ide + 1

⌋
(1)

Output W idth (W fi) =
⌊

W − S
Str ide + 1

⌋
(2)

where the H andW represent the dimension of the input feature
map, and R and S represent the filter dimension. The Stride rep-
resents the convolution stride when applying filters on the input
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feature map. As a result, one can have the total number of memory
accesses calculated as:

Total Access = N × H ′ ×W ′ × R × S ×C

= N ×

⌊
H − R

Str ide + 1

⌋
×

⌊
W − S

Str ide + 1

⌋
× R × S ×C

(3)

3.2.2 Cache Capacity. Let us assume that the cache in the systems
has n cachelines with l cacheline size. Then, the cache capacity is:

Cache Capacity (cCAP ) = l × n (4)

3.2.3 NCHW data layout. Now, let us first construct the model
when the feature map is stored as NCHW layout in memory. In this
case, the widthW is the fastest variance dimension of the array,
then height H and channel C . We assume the width of the feature
map is larger than one cacheline (i.e.,W > l ).

In the ideal scenario, the cache capacity is large enough to hold
the entire working set (including input feature maps and the filters)
of the convolution process. In such a case, there exist only cold
misses to bring the data to cache frommemory. However, in practice,
cache capacity is generally much smaller than the size of the input
feature maps. Recall our discussion about convolution in Section 2, a
filter is applied to the input feature map in a “sliding stride” manner.
That is, the filter is applied to the sub-portions of the input feature
map left-to-right and top-to-bottom based on the stride. We call
one left-to-right convolution as a row and one top-to-bottom as a
column. Depending on the stride and cache capacity, it can happen
that when the filter moves to the second row of the feature map, the
cachelines containing input feature data have been already evicted
from the cache and the same cachelines have to be loaded back to the
cache, leading to poor cache performance. In the worst case, all the
cachelines that are reused during the column convolution have been
evicted by the time reuse happens. Specifically, the amount of data
involved in each row convolution can be calculated as (C × R ×W )
by using the number of channels (C), the height of the filter (R), and
the width of the feature map (W ). Depending on the cache capacity,
several scenarios can occur. First, if the cache capacity is smaller
than C × R ×W −C × l , the cache cannot hold the last C × l data
for one row convolution. As a result, the cacheline that contains
the data accessed by the first row convolution might have been
evicted from the cache when the second row convolution reuses
the same data, leading to additional cache misses for the second
row convolution.

Now, let us formulate the cachemisses.We first calculate the total
number of cachelines that miss in the cache during convolution.
For one row of the convolution, the number of cacheline misses can
be calculated as (N ×C × R ×W )/l . Since the entire convolution
has H −R + 1 rows, the total number of misses is (N ×C ×R ×W ) ×

(H − R + 1)/l . Therefore, the miss rate in this scenario is:
When cCAP < C × R ×W −C × l, and l <W ,

Miss Rate =
N ×C × R ×W × (H − R + 1)

l ∗TotalAccess

(5)

Where the TotalAccess is captured in Eq 3.
While Eq 5 captures the unfortunate scenarios where the reuses

in the subsequent row convolutions miss the cache upon reuse,
those reuses can be captured by the cache with a larger capac-
ity. In such cases, fewer cachelines are needed to be loaded since
some of the cachelines still reside in the cache when the reuses

happen. Specifically, if the cache capacity is larger than one row of
convolution, there are no conflict misses. That is:

When cCAP ≥ C × R ×W −C × l,

cCAP < N ×C × H ×W , and l <W ,

Miss Rate =
N ×C × H ×W
l ∗TotalAccess

(6)

3.2.4 NHWC data layout. Recall our discussion in Section 2, unlike
NCHW data layout, channel is the fastest variance dimension in
the NHWC format. Let us call the convolution along the channel di-
mension as “aisles”. Similar to the case of NCHW format, additional
cache misses occur when the convolution operates from one aisle
to another if the cache capacity is not enough to hold the whole
data of one aisle convolution. Specifically, when the cache capacity
(cCAP ) is smaller than R × S ×C − R × l , and the cacheline size (l )
is smaller than the number of channels (C), i.e., a single cacheline
is not able to hold all the values in channel, the cachelines reused
by the subsequent aisles have been already evicted from the cache
upon reuse, leading to extra cache misses. To be more concrete, the
product of weightâĂŹs height, weightâĂŹs width, and the number
of weight channels (R × S ×C) equals to the number of total data
in the feature map accessed in one aisle. When cache capacity is
smaller than R × S × C − R × l , it cannot hold the last R × l data
for one aisle. Thus, it evicts the oldest cachelines based on LRU
policy to make room for the R cachelines. These replaced cacheline
contain those that will be accessed in the next aisle of convolution,
leading to additional capacity misses for future computations.

To formulate this scenario, the cacheline misses for one aisle
equals to the product of (N ×R×S×C)/l . Consider all the aisles, the
total number of cacheline misses is the product of per-aisle misses,
the distance that the weights move along with the height of the
feature map (H − R + 1), and the distance that the weights move
along with the width of the feature map (W − S + 1). Therefore, the
miss rate can be calculated as:

When cCAP < R × S ×C − R × l, and l ≤ C

Miss Rate =
N × R × S ×C × (H − R + 1) × (W − S + 1)

l ∗TotalAccess

(7)

where the TotalAccess is derived from Eq 3.
It can happen that the cacheline size (l ) is larger than channel size,

especially at the beginning of deep neural networks (e.g., generally
three-channels of input images and three-channels of weights). In
such a scenario, the cacheline size (l ) is greater than the number of
channels (C), and data at different channels and different heights
but the same width may reside in the same cacheline. For the worst
case, cache blocks that will be accessed first in the new row of
convolution have already been replaced by cache blocks that will
not be used in the recent future. When loading these blocks back
to the cache, other blocks that will be reused in the next aisle need
to be replaced by the time reuse happens.

We use C
l to represent the percent of data of all channels with

the same height and width that reside a cacheline. In this case, Cl
is always smaller than 1 since l > C . The number of cachelines
which stores data in one aisle is

⌈C
l × R × S

⌉
. The total number of

cache misses is a product of
⌈C
l × R × S

⌉
, the distance the weight

moves along with the height of the feature map (H − R + 1), and
the distance the weight moves along with the width of the feature
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(a) NCHW data layout. (b) NHWC data layout.

Figure 4: Two data layouts under kernel pruning.
map. Therefore, we have:

When cCAP < R × S ×C, and l > C

Miss Rate =
N ×

⌈ R×S×C
l

⌉
× (H − R + 1) × (W − R + 1)
TotalAccess

(8)

So far, we have discussed the proposed cache estimations un-
der different scenarios. It is important to emphasize that, all the
parameters used in the cache model (i.e., those listed in Table 1)
can be obtained statically without the need of profiling DNN train-
ing. Therefore, the cache model is completely off-line and does not
introduce any runtime overheads to the DNN training process.

3.3 Example
With the proposed cache model and equations, we now use sev-
eral examples to show how pruning affects cache utilization under
different data layouts of input feature maps. In particular, we con-
sider the four pruning strategies discussed in Section 2. The key
observation is that, after applying different pruning strategies on
weights, a significant subset of values in the feature maps will not
be accessed during convolution. As a result, such “pruned” values
can bring significant under-utilization of cachelines. In this section,
we use several examples to explain the pruned pattern in input
feature maps and show the cache inefficiencies caused by weight
pruning.

Figure 4 shows the example of applying kernel pruning under
two different data layouts. We use the red box to denote one cache-
line. Note that, the cacheline size can vary based on different plat-
form configurations. In Figure 4(a), the input featuremaps are stored
as NCHW layout in the memory. The pruned values in the filters
are labeled using white color, whereas the rest non-pruned values
are labeled using blue colors. During convolution, the computation
involves those pruned weights are skipped since the value of those
weights is 0s. As a result, values at the corresponding location in
the feature map will not be used in the intermediate steps of compu-
tation. However, since the caches are managed by hardware and the
minimum granularity in cache swapping is cacheline, it can happen
that some cachelines are severely under-utilized because of prun-
ing. In the example in Figure 4(a), the first, third, and last channels
of filter one were pruned. Thus, values in the first, third, and last
channels of the input feature maps are not used during convolution.
Therefore, NCHW data layout allows most of the skipped values
to be clustered in the same cacheline (as shown by the red block).
Those cachelines are not loaded to the cache avoiding cache thrash-
ing. Meanwhile, those cachelines that are loaded to the cache have a
high utilization as most of the data in the cacheline are not pruned.
On the contrary, when the input feature maps are stored in NHWC
data layout (shown in Figure 4(b)), the cacheline utilization is lower.

(a) NCHW data layout. (b) NHWC data layout.

Figure 5: Two data layouts under shape pruning.

This is because the cachelines consist of the skipped values which
are not used in the convolutions. For example, in the convolution
between filter one and the input feature maps, one can observe that
the skipped values are in the same cacheline (i.e., included in the
red box). As a result, in kernel pruning, NCHW layout is expected
to have better cache hit rates and performance than NHWC layout.
Later, we show quantitative results in Section 4.

Next, we show the shape pruning under different layouts. In
Figure 5(a), the input feature maps are stored in NCHW layout. The
shape pruned in every filter is the left-bottom corner and the top-
right corner. Therefore, the intermediate convolution on feature
maps will skip the values denoted using the white area. A cacheline
is represented using the red box. In this case, every cacheline will
include the skipped values, leading to poor cache performance. On
the contrary, when the input feature maps are stored as NHWC
layout as shown in Figure 5(b), one can find contiguous skipped
values clustered in the same cacheline (as denoted by the red box
in the intermediate convolution). This means that these cachelines
are not loaded to the cache, yielding less cache thrashing and bet-
ter performance. However, we cannot simply assume that shape
pruning always prefers NHWC layout. It is also affected by the
model parameters (e.g., feature map dimensions, filter dimensions,
different shapes, etc). Our cache model takes all these variances
and always makes the prediction of a beneficial layout.

4 EVALUATION
4.1 Evaluation Methodology
We use five DNN models with the aforementioned four pruning
schemes to evaluate our approach. The five DNN models include
VGG16, ResNet18, MobileNet, DenseNet, and ResNet50. We use
Cifar-10 dataset [15] to train each network with 200 epochs. The
pruning rate is set to 4× according to previous paper [21]. All
models are trained using Tensorflow v1.14.0 [1]. Table 2 list the
training parameters for all the five DNN models. Note that, we only
prune the convolutional layers.

We use an internal server to evaluate our approach. The system
is equipped with Intel(R) Xeon(R) Silver 4114 CPU working at
2.20GHz. The system has three-level caches and the cacheline size
is 64 bytes. Specifically, the level 1 cache (L1) consists of 32 KB 8-way
associative instruction cache and 32 KB 8-way set associative data
cache. The level 2 cache (L2) is 1 MB with 16-way set associativity.
The level 3 cache (L3) is a 13.75 MB non-inclusive shared cache. We
test our proposed arbitration framework using the aforementioned
four pruning schemes. The performance results are end-to-end
training execution times.
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Table 2: Training parameters.
DNN models VGG16 ResNet18 MobileNetV2 ResNet50 DenseNet121
Batch Size 128 128 128 128 128

Training Epochs 200 200 200 200 200
Original 14.53G 10.65G 2.16G 22.38G 6.55G
Model Size
Pruned 4.01G 2.67G 0.55G 5.61G 1.65G

Model Size
Pruning Rate 4x 4x 4x 4x 4x
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Figure 6: Overall training execution time.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

Shape Filter ChannelKernel Shape Filter ChannelKernel Shape Filter Shape Filter Kernel Shape Filter Kernel

VGG16 ResNet18 MobileNetV2 DenseNet121 ResNet50

C
a
c
h

e
 M

is
s
 R

a
te

 (
%

) NHWC NCHW

Figure 7: Cache miss rates of three-level caches.

4.2 Results
Figure 6 plots the execution time of training 5 DNN models under
different pruning schemes and different data layouts. Since kernel
pruning is not applicable to MobileNetV2 and channel pruning is
not applicable to MobileNetV2, DenseNet121, and ResNet50. Fig-
ure 6 only shows results for the rest pruning schemes for those
models.

One can make the following observations. First, our cache model
is always able to predict the beneficial data layout for different
DNNs and different pruning schemes. Compared to uniformly us-
ing NHWC layout and NCHW layout, our approach improves the
average training performance with 14.3% and 3.1%, respectively.
Second, all experimental results of filter pruning, channel prun-
ing, and kernel pruning recommend NCHW layout as it provides
lower training time. Recall our discussion in Section 3.3, NCHW
layout avoids loading those skipped data in feature maps to cache,
leading to better performance. Channel pruning is a special case
of kernel pruning since we prune the same channels for different
filters. Filter pruning is a special case of channel pruning because
we randomly prune filters. Therefore, these three pruning strate-
gies share a similar observation and have consistent data layout
preference. Third, for shape pruning, it shows diverse results. While
VGG16, ResNet18, ResNet50, and DenseNet121 prefers NHWC for-
mat, MobileNetV2 is an exception and prefers NCHW format. The
reason behind this is twofold. First, MobileNetV2 uses a different
pruning shape compared to the example in Figure 5. Second, the
dimension of feature maps is comparably smaller than other net-
works. Consequently, one cacheline is able to capture more than
one entire channels. Therefore, those skipped values will also be
included in the cachelines.

To further understand the performance gains, we show the cache
miss rates of three-level caches in Figure 7. We used vTune to profile
the training and obtain the miss rates. Comparing Figure 7 and the
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Figure 8: Cache miss rate estimated by the proposed cache
model.

first two bars in Figure 6, one can observe that the L1 cache miss
rates consistently match with the execution times. We also show
the estimated L1 cache miss rates in Figure 8. Specifically, we use L1
cache capacity in our model and predict the cache miss rates under
different data layouts. As one can observe, though the absolute
values have a large discrepancy compared to the value in Figure 7,
the trend predicted matches with Figure 7. That is, our model is
always able to predict the beneficial data layout for different DNNs
under different pruning schemes.

It is also important to emphasize that, the cache model based
data layout prediction does not affect the training accuracy at all.
We observe the exact same training accuracy in both NHWC and
NCHW formats.

5 RELATEDWORK
DNN parallelization: Previous works investigated data paral-
lelism optimizations to improve the training performance [2, 10, 13,
17–19, 23, 26]. Kumar et al. [16] scaled the ML models to 4k-chip
Google TPU-v3 machines and explored model parallelism to ad-
dress the scaling limitations in data parallelism. They also optimized
communication, investigated distributed evaluation of training met-
rics, and improved host input processing scaling. Krizhevsky et
al. [14] proposed hybrid parallelism where data parallelism is used
for convolutional/pooling layers and model parallelism is used for
fully-connected layers. Goyal et al. [8] developed a three-step all-
reduce operation to optimize communication across parallel devices.
Their approach also overlaps gradient synchronization with back-
ward propagation. Pal et al. [25] explored hybrid parallelization
to overcome the statistical efficiency losses introduced by data-
parallel at scale. Jia et al. [13] developed a mechanism to partition
the tensor along multiple dimensions and then searches for the best
parallelization strategy for each partition.
DNNpruning: Pruning is a widely-used approach in modern DNN
models to significantly reduce DNN execution time by removing
unnecessary computation and memory access while maintaining
the accuracy. At a high level, various pruning strategies can be
classified as unstructured pruning [4, 5, 7, 9], structured prun-
ing [11, 12, 28, 30], and pattern-based pruning [22, 24]. Although
unstructured pruning has the advantage of maintaining accuracy, it
brings sparsity and irregularity in weight matrices, and as a result,
extra indices are used to index the non-zero weights in the sparse
matrix storage format (e.g., CSR format). In contrast, the major
advantage of structured pruning is that a full matrix is maintained
with dimension reduction, thereby facilitating hardware acceler-
ation. Pattern-based pruning is guided by compilers but requires
specific pre-determined patterns in order to leverage the hardware
parallelization.
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Compared to these prior efforts, we address the training bottle-
neck from an orthogonal perspective, i.e., data layout optimizations.
While most of the parallelization strategies focus on computation
scheduling and placement, the optimized data layout brings further
performance improvements by improving the cache performance.
More importantly, the beneficial layout choice is no longer obvious
when different pruning strategies are being applied. As such, the
proposed auto-arbitration framework built upon the cache model
can be combined with existing parallelization strategies and prun-
ing schemes to further boost the training performance.

6 CONCLUSION AND FUTUREWORKS
Training DNN models is an important workload in datacenters and
it is time-consuming and resource-demanding.While parallelization
(e.g., data parallelism and model parallelism) strategies and pruning
schemes effectively reduce the training time, the data layout of the
input feature maps also plays an important and orthogonal role in
shaping the overall training performance. In this paper, we propose
a data layout arbitration framework that is built upon a formulated
cache model to estimate the impact of different data layouts of
input feature maps, especially under different pruning schemes.
Experimental results on five DNNmodels and four different pruning
schemes indicate that our approach achieves an average of 14.3%
and 3.1% training time reduction, comparing to uniformly using
NHWC layout and NCHW layout, respectively.

While the cache model in this paper is effective in capturing
the beneficial data layout between NCHW and NHWC, it also
paves at least two research avenues. First, it is possible that neither
NCHW nor NHWC provides the optimal training performance
and a transformed new layout (e.g., NH’WH”C) is preferred. This
is because, i) neither data layout may not be able to completely
eliminate the unused entries in the cachelines, leading to cacheline
under-utilization and cache trashing, and ii) different computation
kernels in training prefer different layouts. To this end, we plan
to expand the model to identify optimal data layouts in training.
Second, we are expanding the model to GPUs with tensor core
supports. The observation is that the preferred layout on GPUs and
tensor cores is different from on the CPUs.
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