
GRIT: Enhancing Multi-GPU Performance with
Fine-Grained Dynamic Page Placement

Yueqi Wang�† , Bingyao Li�†, Aamer Jaleel‡, Jun Yang†, Xulong Tang†
University of Pittsburgh†, NVIDIA‡

yuw249@pitt.edu, bil35@pitt.edu, ajaleel@nvidia.com, juy9@pitt.edu, tax6@pitt.edu

Abstract—Multi-GPU systems have become popular to cater
to the growing demands for high parallelism and large memory
capacity. However, the delivered performance is constrained
by the non-uniform memory access (NUMA) overhead arising
from data sharing and communication across multiple GPUs.
Recent multi-GPUs employ unified virtual memory (UVM) to
simplify the programming effort. In UVM-enabled multi-GPUs,
three popular page placement schemes are adopted to mitigate
the NUMA overheads: i) on-touch page migration, ii) access
counter-based migration, and iii) page duplication. However, we
observe that the preferred page placement scheme varies across i)
different applications, ii) different pages of the same application,
and iii) even different execution phases of a single page, making it
challenging to find a “one-size-fits-all” page placement scheme. To
this end, we propose GRIT, which dynamically and automatically
determines the appropriate page placement schemes at runtime
in a fine-grained manner to enhance multi-GPU performance and
scalability. Experimental results indicate that GRIT achieves an
average of 60%, 49%, and 29% performance improvements over
uniformly adopting on-touch migration, access counter-based
migration, and page duplication, respectively.

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely used in mod-

ern computing systems to provide accelerated performance for

various applications [13], [15]–[17], [20], [26], [37], [46], [47],

[49], [50], [53], [57], [64]. Despite the continuous efforts from

GPU vendors to increase single GPU parallelism and memory

capacity, modern GPUs still struggle to keep up with the

rapid growth of dataset sizes and parallelism requirements of

applications [51]. To cater to application demands, multi-GPU

systems today provide high parallelism and large aggregated

memory capacity by connecting multiple GPUs through high-

bandwidth connections (e.g., NVLink [21]). For instance,

NVIDIA DGX-2 [42] features up to 16 GPUs per node, while

AMD equips the TS4 server with four MI25 GPUs [7].

Modern multi-GPU systems generally employ unified vir-

tual memory (UVM) to simplify programming and improve

application portability and compatibility [4], [5], [41], [45].

UVM allows GPUs to access data residing in remote physical

memory through universal pointers. However, the performance

of UVM-enabled multi-GPUs is constrained by the non-

uniform memory access (NUMA) overheads arising from data

sharing and communication across GPUs. To mitigate NUMA

overheads, there are three popular page placement schemes

in UVM-enabled multi-GPUs. First, on-touch page migra-

tion [44] always migrates pages to the requesting GPU’s mem-

� The authors contributed equally.

ory when the pages are not locally present. While this guar-

antees local page access, significant data-sharing across GPUs

can lead to frequent page migrations. Second, counter-based

page migration [45] uses an “access counter” to trigger page

migration when the access counter reaches a certain threshold

(e.g., 256 in NVIDIA Volta GPUs [41], [43]). However, the

benefits are often offset by the large number of expensive

remote accesses and frequent page table entry invalidations [4],

[5], [8], [9]. Third, page duplication replicates pages in the

GPU’s local memory to facilitate local page reads. However,

page duplication redundantly keeps duplicated pages, which

can potentially lead to memory oversubscription [22], [24],

[38]. Moreover, when a GPU performs a write operation, it

has to invalidate all page replicas on other GPUs (called page
write collapse), incurring additional overheads.

Modern multi-GPU systems uniformly adopt one of the

page placement schemes. We plot the performance of uni-

formly adopting each scheme in Figure 1. We use various

benchmarks with representative access patterns and implement

all three schemes in MGPUSim [56]. The detailed character-

istics of benchmarks are given in Table II, and the simulation

configurations are discussed in detail in Section III-B. We

also include results called Ideal. The Ideal is implemented

as follows: i) All the page reads, except the first cold page

reads, can find the page in the GPU’s local memory. ii) All

the page writes update the pages with zero NUMA latency

regardless of whether the pages are in local memory or remote

memory. Note that, the Ideal is not practical, and we only

use it to reflect the optimization potentials. The results in

Figure 1 are normalized to the on-touch migration. The figure

reveals that there is no “one-size-fits-all” page placement

scheme that universally yields the highest performance across

all applications. These performance differences are attributed

to the diverse page-sharing patterns observed both across

different applications and across different execution phases in

the same application (quantitative results and detailed analysis

are given in Section IV-B). This figure clearly demonstrates the

importance of developing a dynamic page placement scheme

in multi-GPU systems.

Prior works mitigating NUMA overheads in multi-GPUs

include prefetching [23], [24], [52], dynamic page migra-

tion [10], [12], [24], and peer-to-peer load/store [38], [39].

Specifically, prefetching relies on the accurate prediction of

data access patterns which are hard to observe in GPUs due to

the massive parallelism. Dynamic page migration proactively

1080

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/24/$31.00 ©2024 IEEE
DOI 10.1109/HPCA57654.2024.00085

�
���

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����

�
��

�
��

��
��

��
��

��
�

�
!�

" #$�%!& �!!�''(!�% $�� �%���!�$��)����
Fig. 1. Performance of each scheme relative to baseline on-touch migration.

migrates the pages in a bandwidth-aware fashion. However,

it is solely based on one migration policy (e.g., on-touch),

which is not able to benefit different sharing patterns across

GPUs. Peer-to-peer load/store allows fine-granular data trans-

fer among GPUs. However, it increases the access latency

and requires maintaining expensive cache coherence across

multiple GPUs [38], [39].

In this paper, we aim to enhance multi-GPU memory

access efficiency by dynamically determining page placement

schemes in a fine-grained manner. To this end, We propose

fine-GRained dynamIc page placemenT (GRIT) with three

key and novel designs. First, we introduce a Fault-Aware Ini-

tiator that detects and decides when to change page placement

schemes by leveraging the number of page faults sent to the

host. Second, we propose a software-based Page Attribute

Table (PA-Table) in memory that records the page access

information to determine appropriate page placement schemes.

We design a hardware-based Page Attribute Cache (PA-Cache)

to reduce the potential memory bandwidth contention caused

by memory accesses to PA-Table. Finally, we develop a

Neighboring-Aware Predictor that leverages the access pattern

similarity of neighboring pages to proactively predict and

determine page placement schemes for adjacent pages. The

paper makes the following major contributions:

• We conduct a comprehensive characterization and root the

source of performance variation across different page place-

ment schemes. We quantitatively analyze the page sharing

patterns across different applications and across different

execution phases within a single application. The results

indicate that i) different pages prefer different placement

schemes during execution and ii) neighboring pages generally

show the same scheme preferences.

• We propose GRIT, which incorporates three optimizations:

i) Fault-Aware Initiator to detect the inappropriate page

placement scheme and initial scheme change when necessary;

ii) Page Attribute Table to track the page access characteris-

tics and make decisions on the appropriate page placement

scheme; and iii) Neighboring-Aware Prediction to proactively

determine the page placement scheme for adjacent pages.

• We evaluate GRIT using eight multi-GPU applications. Ex-

perimental results show that GRIT achieves an average of

60%, 49%, and 29% performance improvement over on-

touch migration, access counter-based migration, and page

duplication, respectively. We also evaluate GRIT with large

page size and different numbers of GPUs, and compare it

with the state-of-the-art. The results show that GRIT either

outperforms existing approaches or can be combined with

existing approaches to yield further benefits.

���(*�+�	�

������,�-�����

./�	

0//	
�

�
� ����12

���

��

344�
��5

6���

��������(
��������	

��7��(��	�7��
���7�(��������	

��,������	(
��7���

����

��
��

(�
��
��
�
�	

(�
��

��
�

���(����7�

��
��

(

����

����

���(����7�

����

����

����

����

���(����7�

���� ����

����

���� ��������

����

���,������	(
�����7�

���(����7�

����

���� ����

����

���

����

�� !"�(����12
��

��(

����
��#

8�	

����

� � �

�

��
��
��
��

�#

��

��
��

(

��
��

(
��

��
(

$�,,��%7

��
��

(

��
��

(

��
��

(

��
��

(

��
��

(

��
��

(

���� ������
��

(

��
��

(

�
�

��
��

(

�
�

���	

(
��9�	1(

��

Fig. 2. Baseline GPU architecture and page placement schemes.

II. BACKGROUND

A. Baseline UVM-Enabled Multi-GPU System

In this paper, we focus on multi-GPU systems, where mul-

tiple GPUs are connected via high-bandwidth interconnects

such as PCIe [40] or NVLink [21]. Figure 2 shows the multi-

GPU architecture. Unified virtual memory (UVM) [21] is

employed and managed by the UVM driver on the CPU side.

UVM allows programs to use universal pointers to access the

memory in the CPU and different GPUs. Each GPU has its

own local memory and local page table (PT). If the page table

entry is invalid in the local page table, a local page fault

is generated and sent to the UVM driver. The UVM driver

maintains a centralized page table that stores all valid and up-

to-date address translations for all GPUs [5].

B. Page Placement Scheme

There are three common page placement schemes which are

illustrated in Figure 2.

1) On-touch migration: As shown in Figure 2 A , whenever

a GPU accesses a page that is not currently presented in its

local memory, the page will be migrated into the requesting

GPU memory. Migrating a page is expensive and introduces

execution overheads [10], [30], [32], [60]. The detailed page

migration is similar to previous works [10], [30], [32], [60].

Specifically, first, UVM flushes in-flight instructions in the CU

pipeline and the contents of the caches and TLBs of the GPU

that owns the page. Second, the UVM driver migrates the

page to the requesting GPU and notifies the finish of the page

migration to the requesting GPU. On-touch page placement

ensures that the subsequent GPU accesses to the same page

can fetch the data from its local memory. However, if a page is

accessed by different GPUs in an interleaved manner, on-touch

placement can lead to “ping-pong” page migrations, which

significantly degrades performance.

2) Access counter-based migration: NVIDIA Volta

GPUs and newer generations [14], [41] feature hardware-

implemented access counters to avoid frequent page migration.

The access counters track the number of remote accesses at

a page group granularity of 64 KB. The GPU establishes the

address translation to a remote physical page in its local page

table. A static threshold of 256 remote accesses is employed

to trigger page migration. Figure 2 B shows the process

of the access counter-based page placement scheme. The

detailed process is as follows. 1) When a GPU first accesses

a physical page in another GPU, it generates a local page

fault. This local page fault is forwarded to the UVM driver.

The UVM driver walks the centralized page table to obtain

1081

the translation of the page and sends the translation back to

the requesting GPU; 2) Upon receiving the translation, the

GPU updates the local page table to establish the remote

translation mapping, as well as fetches the data at a cache line

granularity from the remote GPU; 3) On each remote memory

access to a page, the access counter of the corresponding

page group is incremented. When the access counter reaches

the threshold, the page migration request is generated to the

UVM driver; 4) The UVM driver broadcasts the invalidation

requests to every GPU to invalidate the page table entries,

TLBs, and caches to ensure translation and data coherence,

as well as flush in-flight instructions in the CU pipeline; 5)

After all invalidations finish, the UVM driver initiates the

page migration. This scheme helps reduce “Ping-Pong” page

migrations across GPUs but introduces remote access and

invalidation overheads [30].

3) Page duplication: Figure 2 C shows the page du-

plication scheme. Specifically, when a read/load operation

generates a local page fault, the GPU replicates the page in

its physical memory. In scenarios where the page is loaded by

multiple GPUs, each GPU stores a page replica in its local

memory. When a GPU performs a write operation on a shared

page, page write-collapse is required to ensure consistency.

Specifically, when any GPU writes a page, the GPU sends a

page protection fault to the UVM. Upon receiving the page

protection fault, the UVM driver sends the page invalidation

requests to the corresponding GPUs. GPUs that own the page

flush in-flight instructions in the CU pipeline, the contents of

TLBs and caches, and invalidate the corresponding Page Table

Entry (PTE). Then, the requesting GPU can resume its write

operations on the page. If any other GPUs read that page again,

the UVM driver copies the most recent version of the page to

that particular GPU. The page duplication allows read-shared

pages to be accessed locally by multiple GPUs, avoiding

remote memory access latency. However, the overhead of

collapsing read-write shared pages can be expensive, making

it unsuitable for write-intensive applications. Moreover, it is

subject to memory oversubscription because of duplicated

copies of the same page (as shown by prior works [38], [63]).

III. METHODOLOGY

A. Applications

We use eight applications with various multi-GPU mem-

ory access and page sharing patterns from AMDAPPSDK

[6], Hetero-Mark [55], SHOC [18], and DNN-MARK [20]

benchmark suites as listed in Table II. Specifically, BFS and

BS demonstrate a random access pattern where each GPU

performs read and write operations to other GPUs in an

unpredictable manner. C2D, FIR, SC, and ST exhibit adjacent

access pattern in which the input data is batched and shared

with the neighboring GPUs. GEMM and MM follow a scatter-

gather access pattern where each GPU reads or writes data

from local and remote GPUs.

TABLE I
BASELINE MULTI-GPU CONFIGURATION.

Module Configuration
Compute Unit 1.0 GHz, 64 per GPU

L1 Vector Cache 16 KB, 4-way

L1 Inst Cache 32 KB, 4-way

L1 Scalar Cache 16 KB, 4-way

L2 Cache 256 KB, 16-way

DRAM Configured to 70% of application’s memory footprint
[10], [22], [24], [34]

L1 TLB 32 entries, 32-way, 1-cycle lookup latency,
CU private, LRU replacement policy

L2 TLB 512 entries, 16-way, 10-cycle lookup latency,
CUs shared, LRU replacement policy

Page table walk GMMU 8 shared page table walker [48], [54], [59],
100-cycle latency per level [25]

Page walk cache 128 entries shared across page table walker [48]

Page walk queue 64 entries

Access counter threshold 256 [43]

Inter-GPU network 300GB/s NVLink-v2

CPU-GPU network 32GB/s PCIe-v4

TABLE II
LIST OF APPLICATIONS.

Abbr. Application Benchmark
Suite

Access
Pattern

Memory
Footprint

BFS Breadth-first Search SHOC Random 32 MB
BS Bitonic Sort AMDAPPSDK Random 30 MB
C2D Convolution 2D DNN-Mark Adjacent 94 MB
FIR Finite Impulse Resp. Hetero-Mark Adjacent 155 MB

GEMM
General Matrix
Multiplication

AMDAPPSDK Scatter-Gather 16 MB

MM Matrix Multiplication AMDAPPSDK Scatter-Gather 33 MB
SC Simple Convolution AMDAPPSDK Adjacent 131 MB
ST Stencil 2D SHOC Adjacent 33 MB

B. Baseline Configuration

We conduct our experiments using the industrial-validated

MGPUsim Simulator [56]. We target multi-GPU system where

each GPU has its own local page table and GPU Memory

Management Unit (GMMU). The baseline configurations are

shown in Table I. Note that, the GPU memory capacity is

configured to a fixed ratio (i.e., 70%) of the application’s

memory footprint (given in the last column of Table II).

This allows us to model the memory oversubscription during

execution while avoiding extremely long simulation times

when simulating large memory footprints. This approach is

also employed by prior work GPU [10], [22], [24], [34]. In

the baseline settings, we use a 4KB page size and provide

sensitivity to large page size in Section VI-B3. In all the

experiments, the thread block (TB) scheduler first schedules

the TBs across CUs within one GPU in a round-robin fashion.

Only when the GPU cannot accommodate more TBs, the

scheduler moves to the next GPU [30], [32]. This scheduling

captures the inter-TB locality within a GPU.

IV. MOTIVATION AND CHARACTERIZATION

A. Overall Application Characteristics

We plot the page-handling latency of each page place-

ment scheme and normalize the page-handling latency to the

baseline on-touch migration. For each scheme, we further

break down the page-handling latency into six parts, as shown

in Figure 3. Specifically, “Local” captures local page table

walk latency after L2 TLB misses. “Host” represents the

UVM page faults handling latency. “Page-migration” captures

1082

���� ����

�
����

���
��&�

�
����

�	
'
��

�	
'
��

�	
'
�

�
'
��

�
'
��

�
'
�

���
'�

�

���
'�

�

���
'�

	�'
��

	�'
��
	�'

�

����'
��

����'
��

����'
�

��'
��

��'
��
��'

�

�'
��

�'
��

�'
�

�'
��

�'
��

�'
�

�
�(

��
!�
"�

��
�"

��
�

��!�� ��'$ ���#�����$�� ����$�#�!!�'' ���#�%���!�$�� ���$�#!�����'�

Fig. 3. Page-handling latency breakdown of each page placement scheme. (OT
represents on-touch migration, AC indicates access counter-based migration,
and D stands for page duplication.)

the page migration latency as discussed in detail in Sec-

tion II-B1. One can observe that “page-migration” accounts

for a significant portion of page-handling latency in each

application when on-touch migration is employed, whereas,

in contrast, the “page-migration” is significantly reduced by

allowing remote access when access counter-based migration

is employed. However, the counter-based migration introduces

a notable increase in remote access latency, which is denoted

by the “remote-access” portion in the figure. While “page-

migration” and “remote-access” latency are eliminated in the

page duplication scheme, duplicating pages introduces two

unique latencies labeled as “page-duplication” and “write-

collapse”. Specifically, “page-duplication” includes latencies

of i) UVM driver duplicating page to requested GPU, ii)

page eviction from GPU due to oversubscription, and iii)

page re-duplication when accessing the evicted page. “Write-

collapse” includes latencies of i) the UVM driver walking the

centralized page table to obtain the information and ii) the

GPU that owns the page flushes in-flight instructions in the

CU pipeline, contents of the caches and TLBs, and invalidates

the corresponding PTE. In Figure 3, applications BFS, GEMM,

and MM show little “write-collapse” latency. This is because

these applications are read-intensive, and duplicating shared

pages can substantially increase local access. However, “page-

duplication” and “write-collapse” can introduce significant

latencies in certain applications with frequent reads and writes

to the shared pages. As such, those shared pages are frequently

collapsed after writes and then re-duplicated after reads by

GPUs. For example, in BS, C2D, and ST, it’s observed that

46%, 49%, and 45% of their pages, respectively, experience

write-collapse being re-duplicated by reads afterward.

B. Page Access Characteristics

Observation 1: The page-sharing patterns vary among
different applications and show variations over time within
the same application. Figure 4 shows the percentage of

private pages and shared pages of each application. We define

the private page as pages that are only accessed by one GPU

��
���
���
&��

����

�	
 �
 ��� 	� ���� ��
�
� �
��

)�
!!

�'
'(

��
�!

�
$�

��

!" �!"�(#!��
�����(���� ����		(
�(�����
�(���� ����		(
�(�����(����

Fig. 4. Percentage of private page and shared page, and percentage of accesses
going to private pages and shared pages.

�
��
��
��

���

� � �� �� �� �� ����
�!

�
$�

��
(�

�(
��

��
(�

!!
�'

'�
 �

���((����(���������(!�!��'�(�����

���(� ���� ���� ����

�
��
��
��

���

� � �� �� �� �� ��
�#�((����(���������(!�!��'�(����

Fig. 5. Shared page access pattern over time for a certain page.

during the entire execution, while shared page are accessed by

more than one GPU during the whole execution. One can ob-

serve differences in page sharing across different applications.

For example, in FIR and SC, almost all the pages are private.

In contrast, almost all pages are shared by GPUs in BFS and

ST. Applications such as C2D and MM show a mix of both

private and shared pages. The sharing behavior significantly

impacts the performance of page placement schemes. For

private pages, pages are exclusively accessed by a single GPU.

Therefore, migrating the page on touch to the requesting GPU

maximizes the locality for subsequent accesses. This is also

the reason why on-touch migration outperforms other page

placement schemes in FIR and SC (see Figure 1), where

a significant portion of private pages are observed. We also

show the percentage of accesses to private pages and shared

pages in Figure 4. One can observe that, except BFS, all other

applications have a majority of page accesses going to the

dominating page types (i.e.,g private or shared). While BFS
has a large number of shared pages, only a few accesses are

going to shared pages. Therefore, employing access counter-

based page migration is appropriate for these shared pages.

For shared pages, we further investigate their access behav-

iors during the course of execution. We collect the distribution

of the accesses to a page from all GPUs at intervals of one

million cycles for C2D and ST, who have a significant amount

of page sharing. As shown in Figure 5, we can classify the

shared pages into two categories. First, producer-consumer
shared page (PC-shared page), where the page is dedicatedly

accessed by one GPU at certain intervals and then accessed

dominantly by another GPU at different intervals, as shown in

the C2D (Figure 5 (a)). For such scenarios, adopting on-touch

migration is more favorable. Second, all shared page, where

different GPUs access the shared page frequently throughout

the execution, as shown in the ST (Figure 5 (b)). In this case,

access counter-based migration is beneficial as this scheme

involves tracking the access counts of each shared page on

different GPUs. If a particular page is currently residing on a

GPU with a low access count, the page becomes a potential

candidate for migration to another GPU with a higher access

count. We also observe sharing pattern change for the same

page in different intervals within ST. Specifically, the same

page in ST shows the all-shared pattern during intervals 0-

5 and becomes the PC-shared pattern during intervals 25-30.

Therefore, for those applications with extensively shared pages

(e.g., BS, C2D, and ST), it is important to dynamically decide

the most suitable page placement scheme for different appli-

cations and different pages during the executions considering

the variations of page sharing patterns.

Observation 2: Page duplication does not always yield

1083

Fig. 6. Private or shared page attribute over time
for all pages (GEMM).

Fig. 7. Read or read-write page attribute over time
for all pages (GEMM).

Fig. 8. Private or shared page attribute over time
for all pages (ST).

�

��

��

��

���

�	
 �
 ��� 	� ���� ��
�
�

��
�!

�
$�

��

�!!�''($�(����(���� �!!�''($�(����#���$�(����

Fig. 9. Percentage of the accesses going to read pages and read-write pages.

�

���

���

���

����

� � �� �� �� �� ��

	7

�

7�
�
�7

(�
�(

��
�7

(�

��
�

7

���7(���������(���,7��(����

�7��#
�7 �7��

Fig. 10. Read and read-write attribute over time for a certain page.

benefits for read-write intensive applications. Ideally, page

duplication can significantly improve performance as all pages

can be accessed in local memory when reused. However, as

shown in Figure 1, the read duplication does not always yield

the best performance. Figure 9 presents this problem using the

distribution of GPU memory accesses to read pages and read-

write pages. The read page refers to a page where all memory

accesses to that page are read during the entire execution.

The read-write page is defined as a page that experiences at

least one write operation during the execution. Combining with

Figure 1, one can make the following observations. First, the

page duplication works well for applications with substantial

read-shared pages (e.g., BFS and GEMM), since duplicating the

shared pages locally can significantly reduce remote memory

access latencies. Second, the page duplication does not provide

benefits to applications with intensive read-write pages (e.g.,

BS, C2D, SC, and ST). This is because the overheads of page

write-collapse can be expensive.

Moreover, read or read-write page attributes also exhibit

time variations within the same application. To illustrate this,

we further study the memory access patterns of the read-write

page during the execution. Figure 10 shows the distribution

of the read/write memory accesses to a particular read-write

page at intervals of one million cycles for ST. We observe that

write memory accesses are not always present throughout the

execution of the application. Instead, there are intervals where

there are only read accesses (intervals 0-8) and other intervals

where there are both read and write accesses (intervals 9-31).

This highlights the importance of carefully choosing the page

duplication, considering the variation in read/write memory

access behavior for different pages and different periods.

Takeaway. The study above reveals that different applica-

tions benefit from different page placement schemes, indi-

cating that there is no one-size-fits-all scheme. The degree

of page sharing and page read/write varies across different

applications, which affects the effectiveness of different page

placement schemes. Within a specific application, different

pages exhibit distinct access patterns, and their behaviors

may vary over time. This dynamic nature of page access

behavior calls for a dynamic page placement scheme that can

accommodate variations in page access characteristics.

C. Page Attributes Characterization

We observe that in many applications, the neighboring

pages tend to exhibit similar access attributes. To illustrate

it, we sample the accesses attributes (i.e., shared/private and

read/write) of consecutive 4,000 pages throughout the entire

execution of GEMM, and the results are presented in Figure 6

and Figure 7. To be more specific, the y-axis represents the

total execution cycles, and we divide the entire execution

cycle into 50 intervals. For each interval, we track all the

page access attributes. As observed, for example, at the same

time interval, pages 0 to 1,000 exhibit the same private and

read attribute, while pages 1,000 to 2,000 display the same

shared attribute. This pattern is also closely related to the

algorithmic data structure in the application. In the case of

GEMM, the algorithm allocates three separately consecutive

memory segments for the two input matrices and the output

matrix. During execution, each GPU reads data for the input

matrices from both its local memory and the remote GPU’s

memory, then each GPU writes its computed portion of the

output matrix only to its own local memory (i.e., DRAM).

The output matrix is divided into portions, and each GPU is

responsible for computing and updating its assigned portion.

As a result, the shared pages, which contain data from the input

matrices, remain read and are accessed by multiple GPUs.

These pages are accessed consecutively in the matrix, leading

to consistent access patterns among neighboring pages within

a certain interval. On the other hand, the write pages, which

1084

!�$7�7(
"7�#%#��

���7

$�,%7

$%�
&��	('((1 &9((
!�&		(�()��"	

��*(
"�#$7� #'(+
%$)'��

%	+
+'
&�
	��7(
,��,

-7#&$���#�&'
$'��7(

%�7�#��#��

.7%�,$7($��,�

Fig. 11. High level overview of GRIT.

store the output matrix data, are accessed sequentially in the

matrix and modified exclusively by a specific GPU, making

them private and consecutive. We also present the private and

shared page attributes over time of one irregular application

(ST) to demonstrate the neighboring page access attributes.

We can observe from Figure 8 that, even though the attributes

of specific pages change over time, neighboring pages exhibit

similar page attributes as well as attribute changes over time.

This observation highlights that if we can track one page’s

access attributes, we can predict the neighboring page access

behavior ahead of time, enabling us to proactively determine

the page placement scheme for neighboring pages.

V. FINE-GRAINED DYNAMIC PAGE PLACEMENT (GRIT)

A. High Level Overview

We propose fine-GRained dynamIc page placemenT
(GRIT) that leverages page access attributes to dynamically

determine the page placement scheme at runtime. There are

three major challenges in effectively and efficiently determin-

ing a page placement scheme. First, different applications

have distinct page access behaviors and the page access

patterns of an application change over time. Therefore, it

is important to promptly identify improper page placement

schemes during the execution and determine when to initiate

the scheme change. Second, to identify the right moment

to change the scheme and select a suitable scheme, it is

important to record the application page access attributes with-

out introducing significant overhead. Finally, inaccurate page

placement scheme predictions can lead to unnecessary page

migration overhead or increased remote memory accesses.

Therefore, it is important to accurately predict the neighbor

page attributes. To this end, we propose GRIT as shown in

Figure 11, which incorporates three novel designs: i) Fault-

Aware Initiator to determine when to initiate page placement

scheme change, ii) Page Attribute Table to monitor the page

access characteristics (i.e., share/private and read/write) to

provide information for selecting appropriate page placement

schemes, and iii) Neighboring-Aware Prediction to proactively

decide neighboring page placement scheme by leveraging

the similarity of access patterns and page attributes among

consecutive pages.

B. Fault-Aware Initiator

One intuitive way to detect whether the current page place-

ment scheme is suitable is to periodically check the per-GPU

and per-page attributes. However, the periodic checks require

each GPU to maintain access patterns and attribute information

(
*+

)#����7 *7��
�
)#���,7

���(���� 	���	(
�� 	��� ��(���
������ �� �
������ �� �

� � �

������	(��
������

���(((((((((�����(�	$'

��#
��� ����1�(����
: :
: :
: :

;
��#�
��� ����1�(����
: :
: :
: :

�

��(��$%��

�	$�(����

��$

Fig. 12. Overview of PA-Table and PA-Cache in GRIT.

for every page, which results in significant storage overhead

in each GPU. Additionally, interconnection communication

overhead arises as the information needs to be shared across

different GPUs to analyze access patterns and page attributes

for each GPU. To mitigate these overheads, we employ the

page fault as an indicator to trigger the page placement scheme

change, which includes the number of local page faults and

page protection faults. When a page translation is invalid in

the local page table entry, it generates a local page fault

that is sent to the CPU for handling. Frequent occurrences

of local page faults for the same page indicate that the

page is being accessed frequently by multiple GPUs and that

the current page placement scheme is unsuitable, suggesting

that page duplication may be more appropriate. Additionally,

as mentioned in Section II-B3, in the page duplication, the

UVM driver will receive a page protection fault when a write

operation is performed on a shared page. If write operations

frequently occur on a shared page, it indicates that the page

duplication is not suitable due to the expensive page write

collapsing overheads, thus a scheme change is demanded.

Therefore, by monitoring the number of local page faults and

page protection faults received in the UVM driver, we can

efficiently detect unsuitable page placements without incurring

additional storage and interconnection overhead. The default

fault threshold is set to four1 to initiate the scheme change.

When a specific page reaches the fault threshold, it triggers

an interruption to the UVM driver for scheme change. We

implement a Page Attribute Table (PA-Table) in the CPU

memory to track the number of page faults for each page.

We discuss PA-Table details next and address questions: How
to track page information? and Which scheme to change to?.

C. Page Attribute Table

Page Attribute Table (PA-Table) is designed to indicate page

attributes (i.e., private/share and read/write) and track the num-

ber of page faults (i.e., local page faults and page protection

faults). Figure 12 shows the architecture details of PA-Table.

Specifically, each entry in the PA-Table is 48 bits and stores

VPN (45 bits), read/write type (1 bit), and fault counter (2 bits,

initialized to 00). In this PA-Table design, accessing PA-Table

involves additional memory accesses, potentially impacting the

memory bandwidth of running applications and introducing

additional overheads. To mitigate this issue, we introduce a

1We also evaluate our approach with different fault thresholds (i.e., the total
number of local page faults and page protection faults) in Section VI-B1.

1085

hardware-managed Page Attribute cache (PA-Cache) to store

frequently accessed entries, thereby mitigating memory band-

width contention caused by additional memory accesses to the

PA-Table. Figure 12 also illustrates the microarchitecture of

PA-Cache. The cache is designed for 64 entries with a 4-way

associative structure. The PA-Cache employs a write-allocate

and write-back policy.

How to track page attribute: When UVM receives a local

page fault or page protection fault, it initiates the page table

walk to resolve the fault request and also checks the PA-Cache

to obtain the access information of the corresponding page.

Specifically, we design 64 entries in the PA-Cache. The VPN

is divided into index bits (the lower 4 bits of VPN) and virtual

page tag (VPT, the upper bits of VPN excluding the index

bits). The index bits of the request are used to locate the set

in the PA-Cache. The VPT of the request is then compared

with the VPT stored in the corresponding set. If the VPT

of the request is found in the PA-Cache, the fault counter

is incremented by 1. The read/write bit is set as the requested

page attribute (0 for read, 1 for write). Once the read/write

bit is set to 1 (write), it remains unchanged during the current

scheme lifetime. The entry in the PA-Table will be deleted

once the fault counter reaches the fault threshold and the page

attribute is updated to a new scheme. However, if the VPT is

not found in the PA-Cache, a memory access is generated to

access the PA-Table. Two scenarios may happen. If the entry is

found in the PA-Table, the corresponding entry is then brought

into the PA-Cache as in the write-allocate policy, and the fault

counter and read/write bit are updated. Otherwise, the VPT

of the request and the corresponding bit are registered in the

PA-Cache. The reason for bringing the entry to PA-Cache and

updating it there instead of directly updating it to PA-Table is

that there is a high possibility for other GPUs to access this

page subsequently due to page sharing. If the PA-Cache is full,

an entry is evicted using the LRU replacement policy and is

written back to the PA-Table. If the fault counter reaches the

fault threshold, the page access information is sent to the UVM

driver for the following analysis, and both the entry in the

PA-Cache and the PA-Table are deleted. Note that, we do not

include a bit for private and shared page characteristics. This

is because the corresponding entry is deleted after the page

placement scheme is changed. In the case of a page accessed

by only one GPU after deletion, it will never generate a local

page fault or page protection fault. Therefore, when a request

successfully hits either PA-Cache or PA-Table and triggers a

scheme change, it indicates that the page is a shared page.

TABLE III
POLICY PREFERENCE.

Types Private PC-shared All-shared
Read OT/Duplication OT/Duplication Duplication
Read-write OT OT/AC AC

Which scheme to change: From the characterization in

Section IV, we can derive the candidate page placement

scheme related to the page attributes, as described in Table III.

Based on the page access information obtained from PA-Table,

�7�(���7		(
�
�������
(
���(��#���,7

���(
�����

���7���
���
�7�

���,������

���7

���7

��,�7��������
��(����(,��(���(

 !!��

Fig. 13. Scheme decision mechanism in GRIT.

"
#

+ %'/(
"�$'
$+"

%��%�
"�$'

&(!"(�-�/(#�-�/(
'%�"/�($�#'

+
"

+#�/�/(
"�$'

% �
$
$

$ �
(
#

�
�
$

%
)
�

+
)
+

�
&'(((((((&%&*&((((((((((*'&*%(((((((((((((((((((((*+&+%((((((((((((((((((++((((((((+,&(((((((((((((((((((((((((((((((((('&,(

Fig. 14. Page table entry format for 4KB pages in GRIT.

we propose a page placement scheme decision mechanism as

shown in Figure 13. If a page placement scheme change is

triggered, it indicates that the corresponding page is a shared

page. This is because a privately accessed page, which is

exclusively accessed by a single GPU, generates only one

local page fault and is registered in the PA-Table upon initial

access. Afterward, the page is migrated to the local memory,

and the translation mapping is established in the local page

table. Consequently, private pages do not trigger any updates

to the PA-Table, and page placement scheme changes are not

initiated for such pages. Therefore, our mechanism simplifies

the decision-making process by solely checking the read/write

bits of the page. If all accesses to a page are read, the scheme is

changed to page duplication. Conversely, if a page is accessed

by write, the access counter-based migration is chosen. The

adopted page placement scheme will be updated in both the

host side PTE and the GPU PTE. The bits of 9 to 10 in the

PTE are used to store the scheme bits as shown in Table IV

and Figure 14. Note that, there is no need to initiate another

page table walk to update the scheme bit. This is because

the scheme bit update occurs during the page table walk to

resolve the page fault. The PA-Cache and PA-Table lookup and

decision-making latency (e.g., PA-Table lookup only needs one

memory access) is generally less than page table walk latency

(e.g., an average of 2-3 memory accesses depending on page

walk cache performance). In situations where the page table

walk is faster than making a scheme decision, we hang on

the page table walk and let it wait for the scheme decision

to be finalized. Note also that, there are potential overheads

associated with scheme changes. When the scheme is reset

from duplication to another scheme, data consistency needs

to be ensured. In such cases, the UVM driver invalidates the

corresponding PTE/TLB in each GPU.

TABLE IV
SCHEME BITS.

Scheme Bits 01 10 11
Scheme On-touch migration Access counter-based Duplication

D. Neighboring-Aware Prediction

Recall our discussion in Section IV, neighboring pages

tend to exhibit similar page attributes. We further propose

a Neighboring-Aware Prediction approach, which leverages

attribute similarity to predict the attributes of neighboring

pages and proactively determine the page placement scheme.

It allows pages that have not yet been allocated in the GPU’s

1086

page table or are still using their previous page placement

scheme to apply the new scheme on the next page fault occur-

rence without having to reach the fault threshold. Specifically,

we define a page group as a set of consecutive pages (i.e.,

pages are located adjacently in the virtual address space).

The minimum page group size is eight 4KB pages, and eight

smaller groups can be combined to form a larger group. In

our approach, we set the maximum group size to 512 pages,

which corresponds to a 2MB continuous virtual address space

that can be accommodated within a single page table page.

This design eliminates the need to check across different

page table pages and avoids generating additional memory

accesses. We leverage the unused bits in the host side PTE

to create a group size bit (i.e., bits 52 to 53, as shown in

Figure 14), which identifies the number of consecutive pages

within the page group. For example, if bits 52 and 53 are set

to “00”, it indicates a single 4KB page. If the bits are set to

“01”, it represents a page group of eight consecutive 4 KB

pages. The mapping of group bits and their corresponding

number of pages is illustrated in Table V. Note that, the

reason for leveraging PTE records this information instead of

embedding it in the PA-Table is that the virtual addresses of

consecutive pages are stored sequentially in the page table.

When we know the virtual address of the base page2 in the

group and the size of the group, we can easily identify all

the consecutive pages within that group by simply traversing

the page table entries sequentially. The group size bits are

only recorded in the PTE of the base page in each page

group to simplify the process of managing and analyzing

consecutive page groups. The virtual address of the base page

(V PNbase) is calculated as follows: V PNbase = V PNcurr−
(V PNcurr/PageSize)%GroupSize × PageSize. It is im-

portant to note that if the group size is set to “01” or larger,

it indicates that all the pages within the group adopt the same

page placement scheme.

TABLE V
GROUP BITS AND THEIR CORRESPONDING NUMBER OF PAGES.

Group bits Number of pages Size
00 1 4KB

01 8 32KB

10 64 256KB

11 512 2MB

As shown in Figure 15, initially, all group size bits are set

to “00”. When the number of page faults of a specific page

reaches the page fault threshold, the page placement scheme

change is initiated (1). Once a new scheme is determined

for this particular page, we then check the page placement

scheme (bits 9 to 10 of the PTE) for eight neighboring pages

(2). If more than half of these checked pages adopt the same

page placement scheme as the newly selected scheme for this

specific page, we apply this new scheme to all these pages and

update the corresponding scheme bits for each page. Then,

we promote these eight pages into a group and update group

bits of the base page to “01” to indicate all eight consecutive

2We define the first page in each group as the base page.

�� �� :
�� �� :
�� �� :
�� �� :
�� �� :
�� �� :
�� �� :
�� �� :

��/ �1-9.(��/0 ��(�)�(��/0(0/(�1(��/0

�<1���
�<1���
�<1���
�<1���
�<1��*
�<1���
�<1��)
�<1��)

�� �� :
�� �� :
�� �� :
�� �� :
�� �� :
�� �� :
�� �� :
�� �� :

�<1���
�<1���
�<1���
�<1���
�<1��*
�<1���
�<1��)
�<1��)

��/ �1-9.(��/0 ��(�)�(��/0(0/(�1(��/0

!���(2�

2�

.#+�,(!���(��($(

3

-.(�,(!���(��($(-.(�,(!���(��($(-.(�,(!���(��($(

!���(!���(!���(!���(!���(!���(!���(

&

+

%

'

Fig. 15. Neighboring-Aware Prediction in GRIT.

pages now adopt the same page placement scheme and can

be treated as a cohesive unit (3). We then recursively check

if this group can combine with other neighboring groups to

further promote to a larger group. Similarly, if more than half

of the neighboring groups (i.e., the group size bit of the base

page is “01”) adopt the same page placement scheme as the

newly determined scheme, we further propagate the scheme

to all these pages (i.e., 64 pages), and update the group size

bit of the base page to “10”, indicating that 64 pages are now

adopting the same page placement scheme (4).

When the page fault of a specific page within the group

reaches the fault threshold and initiates a scheme change,

the scheme bit of this page is changed to the new scheme,

making it different from the scheme used by other pages within

the same group. As a result, we will perform a downward

degradation of the page group, wherein the original group

will be downgraded to a smaller group due to the presence

of a newly selected different scheme within the group. For

example, if the group bits are initially “10” (indicating a

group size of 64 consecutive pages employing the same page

placement scheme), and one of the pages within the group

changes to another scheme, the 64-page group is degraded into

eight 8-page groups. The group of pages where the scheme

change occurred will change group bits to “00” because one of

these eight pages is now using a different scheme and cannot

be considered a unified group anymore. However, the other

seven 8-page groups derived from the initial group still use

the same scheme, and hence, their group bits are set to “01”.

Note that, when the newly determined page placement

scheme is the same as the previously adopted page placement

scheme, which can only occur in the access counter-based

migration, we do not perform page group checks to prevent

unnecessary back-and-forth group promotion and degradation.

For example, consider a page group with eight pages, all

employing the access counter-based migration. When one page

within the group changes to the duplication, the group is

downgraded to single eight pages. Subsequently, the second

and third pages also change to duplication, and upon checking

the neighboring eight pages, only three pages use the same

duplication, which is insufficient to trigger a group promotion.

Then, if another page within this neighboring range initiates

a scheme change and the decision remains the same as the

1087

%�+�

%�+�

3

%�(�%,

����
����	,

�7��7(
�7����
�	�7(
�	�,7

./
��

�
�

0
/

/
��

�

(
�+ ��	�(���

����	,

�7����

����	�,7(
��/(���-1�(&��0
: :
: :

�	 7(!	�,7 *�"� (
 ,��#,���

47+$7�%(��&
��(�)�(&��0 �1-9.('��0 :

�
(�

(�
��

7�

.�$7�7(�7���
(
�7�$	
��

)	$,%���	�7(0
%	%��

/7�$���
����	�7(
��7*�%�

.�

��
�,.�

��
�,

+

Fig. 16. Overview of GRIT.

previous scheme, i.e., access counter-based migration, it will

not perform a page group check. This is because more than

half of the neighboring eight pages are still using the access

counter-based migration scheme, and if we choose to promote

to a larger group, the three pages that employ duplication will

be changed back to the access counter-based scheme. Avoiding

page group checks in such cases prevents unnecessary group

promotion and degradation.

Note also that, the page group check happens in the

background so that page placement scheme updates do not

block GPU execution. Once the local page fault or page

protection fault is resolved, the GPU resumes its execution. In

the background, the UVM driver checks if the page placement

scheme can be unified for neighboring pages, and this process

does not involve any page migration or PTE/TLB invalidation.

E. Putting All Together

Figure 16 provides an overview of the entire process of

GRIT. When a read request is generated, and it misses the

L1, L2 TLB, and local page table, the GMMU sends a local

page fault to the host (the GMMU sends a page protection

fault for a write request) (1). Upon receiving the page fault,

the UVM driver updates the PA-Table and PA-Cache to record

and check the fault information (2) in parallel with page table

walks. Depending on the number of faults that have occurred

for this specific page (3), two scenarios may happen. First,

if the fault has not reached the threshold, the UVM driver

checks the scheme bits of the PTE in the centralized page

table when performing the page table walk. If the scheme

bits are different from the scheme currently being employed

due to the neighboring-aware prediction, the page employs the

updated scheme determined by Neighboring-Aware Prediction

as specified in the centralized PTE without waiting to reach

the fault threshold. Second, if the fault count has reached the

fault threshold, the UVM driver uses the access information

stored in PA-Table to decide the appropriate scheme to be

applied (4). It then updates the scheme bits in PTE for both

the GPU and host side accordingly. Also, the UVM driver

triggers Neighboring-Aware Prediction to further optimize for

neighboring pages and update group bits (5).

F. Overheads

Our proposed GRIT introduces two main overheads. First,

the PA-Table incurs memory overheads and the PA-Cache

incurs hardware overheads. In our design, each entry in the

PA-Table is 48 bits (45 bits for VPN + 2 bits for page fault +

1 bit for read/write attribute) for a single page. Given that

the page size is 4KB, the total memory space required is
48bits
4KB = 0.15% of the application memory footprint. Thus,

the memory overhead of the PA-Table is negligible compared

to the overall memory in the system. With 64 entries in the

PA-Cache, the hardware overhead is (41 + 2 + 1) bits ×
64 entries = 352 bytes. We use CACTI [58] to estimate the

areas and the results show that PA-Cache is 0.04% compared

to the areas of 32KB 8-associative CPU L1 cache. Second,

scheme change involves latency overheads. It can happen that

a new scheme decision is made after the page table walk has

finished. In such cases, the replay of page fault is postponed

until the scheme bit is updated in the page table entry, and this

can impact the total latency of page fault handling. However,

we rarely observe such case happens in our evaluation and

this additional latency is marginal to the overall performance.

When the scheme is reset from duplication to another scheme,

the UVM driver removes all the page replicas and invalidates

the corresponding PTE and TLB in each GPU to ensure

data consistency. Although this process introduces latency, it

is considered trivial compared to the overheads caused by

improper schemes.

VI. EVALUATION

A. Overall Performance

�
���

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����

�
��

�
��

��
��

��
��

��
�

�
!�

" #$�%!& �!!�''(!�% $�� �%���!�$�� %�)�)����

Fig. 17. Performance of each scheme relative to baseline on-touch migration.

We evaluate our proposed approach using the same bench-

marks in Table II. The baseline architecture configuration

is identical to Table I. Figure 17 plots the performance of

GRIT and the three page placement schemes (i.e., on-touch

migration, access counter-based migration, and page dupli-

cation). The results are normalized to the baseline on-touch

migration. GRIT achieves an average of 60%, 49%, and 29%

performance improvements compared to uniformly employing

on-touch page migration, access counter-based migration, and

page duplication, respectively. The performance benefits stem

from the effectiveness of capturing different page access

patterns and configuring appropriate schemes for different

pages and different applications, as we elaborate in detail next.

First, our approach is able to capture different preferred page

placement schemes for different applications. For example, in

BFS, our scheme achieves similar performance compared with

page duplication as the majority of the pages in BFS are read

pages. In contrast, FIR and SC prefer on-touch migration as

most of the pages are private and our approach can capture that

behavior and adjust the page placement scheme accordingly.

It is important to note that, the slight performance drop (2%)

in BFS is because our design starts with on-touch migration

as the baseline and gradually adjusts the page placement

schemes, which involves generating GPU local page fault. This

1088

incurs additional overheads compared to uniformly using page

duplication at initialization. Second, our approach effectively

captures the different page placement schemes during the exe-

cution of a given single application. For example, in GEMM and

MM, page duplication is better compared to on-touch migration

and access counter-based migration as approximately half of

the pages are shared, whereas the other half of pages are

private in these two applications. Our approach still achieves

17% and 9% performance improvements over page duplication

as it is able to capture the read-write pages. That is, our

approach achieves the improvement for GEMM and MM by fine-

tuning the page placement for read pages to duplication and

optimizing the private read-write pages to on-touch migration.

Third, for ST, BS, and C2D, while GRIT achieves the highest

performance improvement over three schemes, there is still a

large gap between GRIT and the ideal performance. This is

because ST, BS, and C2D have a significant amount of shared

read-write pages (99%, 56%, and 42%, respectively) over the

entire execution, making any migration schemes less effective.

�

���

�

���

�

�	
 �
 ��� 	� ���� ��
�
� ����

,
�(

-�
.0
/0

*-
1/

(2
-3

�-.

" #$�%!& �!!�''(!�% $�� �%���!�$�� %�)�

Fig. 18. The number of page faults.

The number of GPU page faults (including both local page

faults and page protection faults) is closely correlated with the

performance results, as these faults can significantly degrade

overall performance due to frequent UVM handling and CPU

interruption. If the page placement scheme is properly deter-

mined, it ensures that most pages are present in local memory

or page table entries are valid in the local page table. It also

avoids frequent page write collapsing, resulting in fewer local

page faults and page protection faults. To help understand the

performance improvements, we present the total number of

GPU page faults when employing different page placement

schemes and GRIT in Figure 18. The results are normalized

to the number of page faults in on-touch migration execution.

GRIT achieves 39%, 55%, and 16% reduction in the total

number of GPU page faults compared to on-touch migra-

tion, access counter-based migration, and page duplication,

respectively. This clearly demonstrates the effectiveness of our

approach in adapting to various access patterns and efficiently

determining the appropriate page placement schemes.

�5

��5

��5

��5

���5

�	
 �
 ��� 	� ���� ��
�
�

��
�!

�
$�

��

" #$�%!& �!!�''(!�% $�� �%���!�$��

Fig. 19. Percentage of each page placement scheme by using GRIT.

We further demonstrate the effectiveness of our approach

by plotting the breakdown of the page placement scheme

during the whole execution. Specifically, Figure 19 shows

the percentage of different page placement schemes among

all the accesses that miss the GPU L2 TLBs. Note that, a

single page can change its schemes multiple times during

different execution phases. Each of the scheme changes is

captured in the figure. We observe a hybrid pattern in many

applications. For BFS, GEMM and MM, page duplication is

the predominant choice due to the substantial read shared

pages, which matches the performance results that duplication

yields the best performance across all three page placement

schemes. For C2D, the on-touch migration is most commonly

employed. The primary reason for this is that the majority

of shared pages in C2D are shared by two GPUs, following

a producer-consumer pattern (as shown in Figure 5). This

pattern only occurs two page faults, which fall below the

fault threshold. Therefore, the scheme continues to employ

the initial on-touch migration. This sharing pattern also reflects

the performance results, where the on-touch migration gains

the highest performance in C2D across three schemes. For

BS, access counter-based migration is primarily employed due

to the substantial number of all-shared pages. The primary

choice of access counter-based migration by GRIT matches the

performance results, in which access counter-based migration

achieves the best performance across all three schemes. For

ST, duplication and on-touch migration play an important

role due to the read pages during a certain interval and PC-

shared read-write pages. The choice of duplication and on-

touch migration by GRIT matches the performance results of

ST, where these two schemes outperform access counter-based

migration. For FIR and SC, the on-touch migration remains

the most proper scheme since almost all the pages are private

as characterized in Figure 4. In a nutshell, our approach is

able to distinguish page attributes and consistently select the

most suitable scheme accordingly.

�
���

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����

4
��
�
��
��
	

�	
��
��
�
�
�	

��#�����(� �� ��#�����*��#��!&� ��#�����*����&���� �#�����#�����!$�� ��)�

Fig. 20. Performance of different components in GRIT.

Figure 20 shows performance improvements of each indi-

vidual component of GRIT (i.e., PA-Table only, PA-Table+PA-

Cache, and PA-Table+Neighboring-Aware-Prediction) normal-

ized to baseline on-touch migration scheme. The results

show that PA-Table only, PA-Table+PA-Cache, and PA-

Table+Neighboring-Aware-Prediction achieve an average of

31%, 47%, and 44% performance improvement over the

baseline, respectively. This demonstrates the effectiveness of

each GRIT component, and these components collaboratively

enhance the performance.

B. Sensitive Study

1) Different fault thresholds: Recall that we leverage a

fault threshold to trigger the scheme optimization. A larger

threshold indicates that more GPU local page faults are

needed to trigger page scheme change, thereby delaying the

1089

���
�

���
�

���

�	
 �
 ��� 	� ���� ��
�
� ����

,
��

-�
.�
/0

�/
�/
��

-�
5/

��%�$(�&��'&���(� ��%�$(�&��'&���(* ��%�$(�&��'&���(��%�$(�&��'&���(�&

Fig. 21. GRIT using 2, 4, 8, and 16 as the fault threshold.

effectiveness of timely capturing page access patterns. In

contrast, a smaller threshold leads to frequent and potentially

“ping-pong” page placement scheme changes, increasing the

overheads in search and adjusting the policies. To choose an

appropriate fault threshold, we show the performance results

employing different thresholds (i.e., 2, 4, 8, and 16) normalized

to baseline on-touch migration in Figure 21. The performance

improvements over the baseline on-touch migration are 53%,

60%, 59%, and 48%, to the fault thresholds of 2, 4, 8, and

16, respectively. As one can observe, the performance gain

saturates when employing 4 as the fault threshold. Therefore,

we choose 4 as the fault threshold in our reported main results.

�
���

�
���

�
���

�	
 �
 ��� 	� ���� ��
�
� ����

,
��

-�
.�
/0

�/
�/
��

-�
5/

" #$�%!&(1����'2 �!!�''(!�% $��(1����'2 �%���!�$�� (1����'2 ��)�(1����'2

Fig. 22. Performance with 2 GPUs.

�
���

�
���

�
���

�	
 �
 ��� 	� ���� ��
�
� ����

,
��

-�
.�
/0

�/
�/
��

-�
5/

" #$�%!&(1 ���'2 �!!�''(!�% $��(1 ���'2 �%���!�$�� (1 ���'2 ��)�(1 ���'2

Fig. 23. Performance with 8 GPUs.

�
���

�
���

�
���

�	
 �
 ��� 	� ���� ��
�
� ����

,
��

-�
.�
/0

�/
�/
��

-�
5/

" #$�%!&(1�&���'2 �!!�''(!�% $��(1�&���'2 �%���!�$�� (1�&���'2 ��)�(1�&���'2

Fig. 24. Performance with 16 GPUs.

2) Different number of GPUs: We also evaluate GRIT in

2-GPU, 8-GPU, and 16-GPU systems. Figure 22, Figure 23,

and Figure 24 present the performances of GRIT with 2

GPUs, 8 GPUs, and 16 GPUs normalized to baseline with

2 GPUs, 8 GPUs, and 16 GPUs, respectively. Note that, in

this experiment, we only change the number of GPUs and

keep the same application input size for a fair comparison.

For 2 GPUs, GRIT achieves 40%, 37%, and 11% performance

improvements over on-touch migration, access counter-based

migration, and page duplication, respectively. The performance

improvements are 38%, 35%, and 26% in 8 GPUs and 27%,

26%, and 23% in 16 GPUs, respectively. To understand

the performance improvements, we also quantify the page

fault reduction achieved by our approach. With 2 GPUs,

we observe reductions of 34%, 42%, and 11% compared

to on-touch migration, access counter-based migration, and

page duplication, respectively. In 8 GPUs, the reductions are

31%, 45%, and 19% for the same schemes. In 16 GPUs, the

reductions are 30%, 47%, and 15% for the same schemes. The

page fault reduction is similar to the 4-GPU system (39%,

55%, and 20%), which demonstrates our approach remains

effective with different numbers of GPUs. Note that, the

decreased performance improvement as the number of GPUs

increases does not mean a weakening of the effectiveness

of our approach. This is because the pages become more

frequently shared among GPUs with more GPUs, leading

to more page migrations. Regardless of the page placement

scheme adopted, page migration latency is unavoidable, and

as the number of migrations increases, the overall impact of

this latency becomes dominant in the total execution time.

This leads to a diminishing in performance improvement as

the potential benefits gained from improved page placement

are reduced by the increased overhead caused by frequent page

migrations.

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����
�

��
�

��
��

��
(

��
��

��
�

�
!�

Fig. 25. GRIT with 2MB pages.

3) Large page: We evaluate GRIT with 2MB page. Note

that, to sufficiently stress the virtual memory subsystem, we

enlarge the application input size (i.e., the memory footprints

span from 0.5GB to 3GB). The result is shown in Figure

25, and the performance is normalized to the baseline with

2MB page size and large input sizes. The average performance

improvement is 23% compared to the baseline on-touch mi-

gration. GRIT maintains its effectiveness even when adopting

larger pages. However, the performance improvement (23%

comparing GRIT-2MB to baseline-2MB) is reduced (60%

comparing GRIT-4KB to baseline-4KB). This is because 2MB

introduces more frequent false sharing among GPUs. Conse-

quently, the page attributes become mixed. For example, in a

sequence of 512 consecutive 4KB pages, there are both read

pages and read-write pages. We can utilize page duplication

for read pages and access counter-based migration for read-

write pages. However, when these pages are merged into a

larger 2MB page, the page attributes become read-write, and

we can only use the access counter-based migration, resulting

in more remote memory accesses.

C. Compared to State-of-the-art

�
���

�
���

�
���

�	
 �
 ��� 	� ���� ��
�
� ����

,
��

-�
.�
/0

�/
�/
��

-�
5/

������ #��� ��)� ������ ��)�*����

Fig. 26. Comparison of Griffin-DPC, GRIT, Griffin, and GRIT+ACUD.

1) Comparison to Griffin: We compare GRIT with the

state-of-the-art multi-GPU page migration management, i.e.,

1090

Griffin [10]. Griffin has two major components: i) Dynamic

Page Classification (DPC) which classifies pages into different

categories and decides which pages to migrate and ii) Asyn-

chronous Compute Unit Draining (ACUD) which reduces the

overhead of pipeline draining and flushing when pages are

migrated. Figure 26 compares the performances of Griffin-

DPC, GIRT, Griffin, and GRIT+ACUD normalized to Griffin-

DPC. We implement DPC using the same default hyper-

parameter configurations as Griffin. We make the following

observations. GRIT achieves 27% performance improvement

over Griffin-DPC (the first two bars). The reasons are two-fold.

First, Griffin-DPC triggers page migration at a predefined time

interval, resulting in substantial remote accesses before the

page migration. In contrast, our Neighboring-Aware Prediction

can effectively predict the neighboring page attributes and pre-

determine an optimal page placement scheme, which signifi-

cantly reduces the remote memory access caused by improper

page placement schemes. Second, Griffin-DPC periodically

tracks access information on each GPU, which introduces

significant communication overheads between CPU and GPUs.

In contrast, GRIT tackles this issue by tracking access infor-

mation on the CPU side, where the scheme change latency

can be hidden during page table walks without introducing

additional latency. Next, we implement ACUD on top of GRIT

(GRIT+ACUD) and compared it with Griffin with DPC and

ACUD (Griffin). Comparing GRIT and GRIT+ACUD, we

observe a 9% average performance improvement since ACUD

is orthogonal to GRIT. Also, the last two bars in Figure 26

indicate that GRIT+ACUD achieves 16% improvement over

Griffin, indicating that GRIT yields additional benefits over

Griffin when ACUD is employed.

�

���

�

���

�	
 �
 ��� 	� ���� ��
�
� ����

�
��

�
��

��
��

��
��

��
�

�
!�

Fig. 27. Comparison to GPS [38].

2) Comparison to GPS: We also compare GRIT with the

state-of-the-art peer-to-peer data access: GPS [38]. GPS auto-

matically tracks the subscribers (i.e., the GPUs accessed shared

page) to each page of memory and proactively broadcasts fine-

grained stores to these subscribers, enabling each subscriber

to read data from their local memory at high bandwidth. Note

that, we implement GPS with the same GPS structure size as

described in the original paper, while the GPU configurations

follow our GPU parameters as listed in Table I. Figure 27

presents the performance of GPS and GRIT, normalized to

GPS. GRIT achieved 15% improvement compared to GPS.

This is because GPS duplicates a physical replica in the GPU’s

local memory once this GPU accesses a page, for applications

(e.g., MM, BS, ST) with a majority of shared page accesses

during the whole execution, almost all pages will be duplicated

in each GPU, which leads to severe memory oversubscription.

The detailed memory oversubscription modeling is discussed

in Section III-B. We monitor and track memory usage and page

eviction events during the runtime. The results indicate that

GPS has an average of 34% higher page oversubscription rate

compared to our approach. This introduces extra overheads

and performance penalties.

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����

�
��

�
��

��
��

��
��

��
�

�
!�

������ #���*��� '#�� ��)�

Fig. 28. Comparison to Griffin-DPC [10] combined with Trans-FW [32].

3) Comparison to the combination of prior works: We

compare GRIT with the combination of Griffin-DPC and

Trans-FW [32]. The Griffin-DPC aims to reduce the number of

page migrations while Trans-FW concentrates on minimizing

the overhead associated with handling page faults caused

by page migration. These two approaches are orthogonal.

As shown in Figure 28, GRIT achieves an average of 18%

improvement compared to the combination. This is because

GRIT enables more local accesses and reduces the number of

page migrations.

D. Comparison to First-Touch Migration

�
���

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����

�
��

�
��

��
��

��
��

��
�

�
!�

Fig. 29. Comparison to first-touch.

We compare GRIT to first-touch migration, Figure 29 shows

GRIT achieves an average of 54% performance improvement.

First-touch migration pins the page on the GPU where that

page is first accessed and uses peer-access for page sharing

across GPUs. It works well for applications with a majority of

private page accesses (e.g., FIR and SC), and GRIT achieves

marginal improvements over first-touch. However, it suffers

remote access overheads for applications with a majority

of shared-page accesses (e.g., MM and GEMM), where GRIT

achieves significant performance improvements.

E. Combine with Prefetching

�
���

�
���

�

�	
 �
 ��� 	� ���� ��
�
� ����

�
��

�
��

��
��

(
��

��
��

�
�

!�

Fig. 30. Performance of GRIT combined with prefetching [23].

Prefetching is a technique that leverages the data locality

to proactively fetch data from the remote device’s memory

to the local memory before it is needed. Ganguly et al. [23],

[24] revealed a tree-based neighborhood prefetching approach

implemented in NVIDIA CUDA driver [45]. Specifically, the

system maintains a set of full-binary trees, where the leaf

levels hold 64KB basic blocks, and the root nodes correspond

to 2MB page addresses. The runtime continuously monitors

the current memory occupancy for each GPU and maintains

1091

this information for each node in the binary trees. When the

runtime detects that a specific GPU’s occupancy of a non-leaf

node in the tree data structure exceeds 50% of the node’s total

capacity, it selects the leaf nodes under that node as prefetch

candidates and fetches them to that GPU. We next combine

GRIT with the tree-based neighborhood prefetching approach.

Figure 30 shows that GRIT with prefetching approach achieves

23% performance improvement over the baseline on-touch

migration with the prefetching approach. This is because our

approach is able to proactively determine the page placement

scheme, which is complementary to the prefetching approach

and brings additional performance benefits.

F. DNN workloads

0

0.5

1

1.5

VGG16 ResNet18

N
or

m
al

iz
ed

pe

rf
or

m
an

ce

Fig. 31. DNN.

We evaluate GRIT using VGG16

and ResNet18 model parallelism on

multi-GPUs. Figure 31 shows that

GRIT achieves 15% on VGG16 and

18% on ResNet18 performance im-

provements over their baseline executions. This indicates that

GRIT also works in multi-GPU-based DNN training.

VII. RELATED WORK

NUMA Optimization: Substantial prior studies have focused

on improving the performance of NUMA systems [1], [10],

[11], [19], [27]–[29], [31]–[33], [36], [61], [63]. Agarwal et

al. [1] developed an intelligent data migration mechanism

for GPU-CPU systems. Young et al. [63] proposed to im-

prove NUMA-GPU by caching remote data in video memory

(CARVE), which dedicates a small fraction of the GPU

memory to store the contents of remote memory. Different

from these NUMA optimizations, our approach focuses on ef-

ficient page placement by fine-tuning different page placement

schemes for pages at runtime, which is complementary to most

of the multi-GPU NUMA optimization.

Runtime Page Placement: Previous research has explored

methods aimed at enhancing the performance of page place-

ment schemes [1]–[3], [19], [35], [62]. Dashti et al. [19]

presented a memory management algorithm that leverages

interleaving, page replication, and page migration, which ad-

dressed the traffic congestion issue and mitigated the cost of

remote wire delays. Agarwal et al. [3] proposed Thermostat,

a mechanism for placing pages in a hybrid memory system at

runtime that detects and acts on hot and cold pages. However,

none of these efforts dive into runtime page attributes, based

on which further improve the page placement. In our work, we

entail a comprehensive analysis of page attributes, leveraging

these insights to further optimize runtime page placement for

multi-GPU NUMA systems.

VIII. CONCLUSION

In this paper, we proposed GRIT which dynamically de-

termines page placement schemes in a fine-grained manner

to enhance multi-GPU page placement. Specifically, we pro-

pose Fault-Aware Initiator to detect the inappropriate page

placement scheme, Page Attribute Table to track the page

attribute and to determine the optimal page placement scheme,

and Neighboring-Aware Prediction to proactively determine

the page placement scheme by predicting page attributes for

adjacent pages. Experimental results show that our proposed

GRIT achieves an average of 60%, 49%, and 29% performance

improvements compared to uniformly employing on-touch mi-

gration, access counter-based migration, and page duplication,

respectively.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous HPCA

reviewers for their constructive feedback and suggestions. This

work is supported in part by NSF grants #2011146, #2154973,

#1725657, #1910413, and #2312157.

REFERENCES

[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,
“Unlocking bandwidth for gpus in cc-numa systems,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 354–365.

[2] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler, “Page placement strategies for gpus within heterogeneous mem-
ory systems,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015, pp. 607–618.

[3] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 631–644.

[4] T. Allen and R. Ge, “Demystifying gpu uvm cost with deep runtime and
workload analysis,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2021, pp. 141–150.

[5] T. Allen and R. Ge, “In-depth analyses of unified virtual memory system
for gpu accelerated computing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

[6] AMD. (2015) AMD APP SDK OpenCL Optimization Guide.
[7] AMD. (2017) AMD Radeon™ Instinct™ MI25 Accelerator.

[Online]. Available: https://www.amd.com/en/products/professional-
graphics/instinct-mi25

[8] N. Amit, “Optimizing the {TLB} shootdown algorithm with page access
tracking,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17), 2017, pp. 27–39.

[9] N. Amit, A. Tai, and M. Wei, “Don’t shoot down tlb shootdowns!”
in Proceedings of the Fifteenth European Conference on Computer
Systems, 2020, pp. 1–14.

[10] T. Baruah, Y. Sun, A. T. Dinçer, S. A. Mojumder, J. L. Abellán,
Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin:
Hardware-software support for efficient page migration in multi-gpu
systems,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 596–609.

[11] L. Belayneh, H. Ye, K. Chen, D. Blaauw, T. Mudge, R. Dreslinski, and
N. Talati, “Locality-aware optimizations for improving remote memory
latency in multi-gpu systems,” in 2022 31th International Conference
on Parallel Architectures and Compilation Techniques, 2022.

[12] C.-H. Chang, A. Kumar, and A. Sivasubramaniam, “To move or not
to move? page migration for irregular applications in over-subscribed
gpu memory systems with dynamap,” in Proceedings of the 14th ACM
International Conference on Systems and Storage, 2021, pp. 1–12.

[13] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous gpu clusters for
deep learning,” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1–16.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), Oct 2009, pp. 44–54.

1092

[15] S. Choi, I. Koo, J. Ahn, M. Jeon, and Y. Kwon, “{EnvPipe}:
Performance-preserving {DNN} training framework for saving energy,”
in 2023 USENIX Annual Technical Conference (USENIX ATC 23), 2023,
pp. 851–864.

[16] Y. Dai, X. Tang, and Y. Zhang, “FlexGM: An Adaptive Runtime System
to Accelerate Graph Matching Networks on GPUs,” in 2023 IEEE 41st
International Conference on Computer Design (ICCD). IEEE, 2023,
pp. 348–356.

[17] Y. Dai, Y. Zhang, and X. Tang, “CEGMA: Coordinated Elastic Graph
Matching Acceleration for Graph Matching Networks,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 584–597.

[18] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in GPGPU-3: Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU-3. New York, NY, USA: Association
for Computing Machinery, 2010, p. 63–74. [Online]. Available:
https://doi.org/10.1145/1735688.1735702

[19] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: a holistic approach to
memory placement on numa systems,” ACM SIGPLAN Notices, vol. 48,
no. 4, pp. 381–394, 2013.

[20] S. Dong and D. Kaeli, “Dnnmark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63–72.

[21] D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[22] D. Ganguly, R. Melhem, and J. Yang, “An adaptive framework for
oversubscription management in cpu-gpu unified memory,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1212–1217.

[23] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Interplay
between hardware prefetcher and page eviction policy in cpu-gpu
unified virtual memory,” in Proceedings of the 46th International
Symposium on Computer Architecture, ser. ISCA ’19. New York,
NY, USA: ACM, 2019, pp. 224–235. [Online]. Available: http:
//doi.acm.org/10.1145/3307650.3322224

[24] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page
migration for irregular data-intensive applications under gpu memory
oversubscription,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 451–461.

[25] B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “Neummu:
Architectural support for efficient address translations in neural
processing units,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1109–1124. [Online].
Available: https://doi.org/10.1145/3373376.3378494

[26] H. Jiang, Y. Chen, Z. Qiao, T.-H. Weng, and K.-C. Li, “Scaling up
mapreduce-based big data processing on multi-gpu systems,” Cluster
Computing, vol. 18, pp. 369–383, 2015.

[27] A. K. Johansen, “Fast multi-gpu communication over pci express bench-
marking pcie transport with the nvidia collective communications library
(nccl) using legacy gpus,” Master’s thesis, 2023.

[28] M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers, “Locality-
centric data and threadblock management for massive gpus,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 1022–1036.

[29] J. Lee, J. M. Lee, Y. Oh, W. J. Song, and W. W. Ro, “Snakebyte: A tlb
design with adaptive and recursive page merging in gpus,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 1195–1207.

[30] B. Li, Y. Guo, Y. Wang, A. Jaleel, J. Yang, and X. Tang, “IDYLL:
Enhancing Page Translation in Multi-GPUs via Light Weight PTE In-
validations,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 1163–1177.

[31] B. Li, Y. Wang, and X. Tang, “Orchestrated scheduling and partitioning
for improved address translation in gpus,” in In Proceedings of the 60th
Design Automation Conference (DAC), 2023.

[32] B. Li, J. Yin, A. Holey, Y. Zhang, J. Yang, and X. Tang, “Trans-FW:
Short Circuiting Page Table Walk in Multi-GPU Systems via Remote
Forwarding,” in Proceedings of the 29rd International Symposium on
High-Performance Computer Architecture (HPCA), 2023.

[33] B. Li, J. Yin, Y. Zhang, and X. Tang, “Improving address translation
in multi-gpus via sharing and spilling aware tlb design,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 1154–1168.

[34] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang, O. Mutlu,
Y. Guo, and J. Yang, “A framework for memory oversubscription
management in graphics processing units,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
49–63. [Online]. Available: https://doi.org/10.1145/3297858.3304044

[35] J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccnuma systems,” in Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, 2006, pp. 90–99.

[36] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the socket: Numa-aware gpus,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017, pp. 123–135.

[37] S. P. Mohanty, “Gpu-cpu multi-core for real-time signal processing,” in
2009 Digest of Technical Papers International Conference on Consumer
Electronics, 2009, pp. 1–2.

[38] H. Muthukrishnan, D. Lustig, D. Nellans, and T. Wenisch, “Gps: A
global publish-subscribe model for multi-gpu memory management,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 46–58.

[39] H. Muthukrishnan, D. Lustig, O. Villa, T. Wenisch, and D. Nellans,
“Finepack: Transparently improving the efficiency of fine-grained trans-
fers in multi-gpu systems,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2023, pp.
516–529.

[40] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, “Understanding pcie performance for end host
networking,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, 2018, pp. 327–341.

[41] Nikolay Sakharnykh. (2017) Unified Memory on
Pascal and Volta. [Online]. Available: http://on-
demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-
sakharnykh-unified-memory-on-pascal-and-volta.pdf

[42] NVIDIA. (2018) DB2 Launch Datasheet Deep Learning Letter WEB.
[Online]. Available: https://www.scribd.com/document/336084072/
61681-DB2-Launch-Datasheet-Deep-Learning-Letter-WEB-NVidia-
Deep-Learning-Box#

[43] NVIDIA. (2022) NVIDIA Linux Open GPU Kernel Module
Source. [Online]. Available: https://github.com/NVIDIA/open-gpu-
kernel-modules

[44] NVIDIA Corp. (2016) Nvidia pascal architecture. [Online].
Available: https://www.nvidia.com/en-us/data-center/resources/pascal-
architecture-whitepaper/

[45] NVIDIA Corp. (2018) Everything you need to
know about unified memory. [Online]. Avail-
able: https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-
everything-you-need-to-know-about-unified-memory.pdf

[46] T. Pany, D. Dötterböck, H. Gómez-Martı́nez, M. S. Hammed, F. Hörkner,
T. Kraus, D. Maier, D. Sánchez-Morales, A. Schütz, P. Klima et al.,
“The multi-sensor navigation analysis tool (musnat)–architecture, lidar,
gpu/cpu gnss signal processing,” in Proceedings of the 32nd Interna-
tional Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2019), 2019, pp. 4087–4115.

[47] E. Park, J. Ahn, S. Hong, S. Yoo, and S. Lee, “Memory fast-forward:
A low cost special function unit to enhance energy efficiency in gpu
for big data processing,” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015, pp. 1341–1346.

[48] B. Pratheek, N. Jawalkar, and A. Basu, “Improving gpu multi-tenancy
with page walk stealing,” in 2021 IEEE 27th International Symposium
on High Performance Computer Architecture (HPCA), 2021.

[49] M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, “Real-time big
data stream processing using gpu with spark over hadoop ecosystem,”
International Journal of Parallel Programming, vol. 46, pp. 630–646,
2018.

[50] L. Savioja, V. Välimäki, and J. O. Smith, “Audio signal processing using
graphics processing units,” Journal of the Audio Engineering Society,
vol. 59, no. 1/2, pp. 3–19, 2011.

1093

[51] D. Schaa and D. Kaeli, “Exploring the multiple-gpu design space,”
in 2009 IEEE International Symposium on Parallel & Distributed
Processing. IEEE, 2009, pp. 1–12.

[52] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “Apogee: Adaptive
prefetching on gpus for energy efficiency,” in Proceedings of the
22nd international conference on Parallel architectures and compilation
techniques. IEEE, 2013, pp. 73–82.

[53] C. Shao, J. Guo, P. Wang, J. Wang, C. Li, and M. Guo, “Oversub-
scribing gpu unified virtual memory: Implications and suggestions,” in
Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering, 2022, pp. 67–75.

[54] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and
A. Basu, “Scheduling page table walks for irregular gpu applications,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 180–192.

[55] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in 2016 IEEE International
Symposium on Workload Characterization (IISWC), 2016, pp. 1–10.

[56] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “Mgpusim: Enabling multi-gpu performance modeling and
optimization,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 197–209. [Online].
Available: https://doi.org/10.1145/3307650.3322230

[57] R. Tang, Z. Zhao, K. Wang, X. Gong, J. Zhang, W. Wang, and P.-C. Yew,
“Ascetic: Enhancing cross-iterations data efficiency in out-of-memory
graph processing on gpus,” in Proceedings of the 50th International
Conference on Parallel Processing, 2021, pp. 1–10.

[58] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies,” in 2008
International Symposium on Computer Architecture, 2008, pp. 51–62.

[59] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee,
“Observations and opportunities in architecting shared virtual memory
for heterogeneous systems,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016,
pp. 161–171.

[60] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo, “Grus: Toward
unified-memory-efficient high-performance graph processing on gpu,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 18, no. 2, pp. 1–25, 2021.

[61] C. Xie, F. Xin, M. Chen, and S. L. Song, “Oo-vr: Numa friendly
object-oriented vr rendering framework for future numa-based multi-
gpu systems,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 53–65. [Online].
Available: https://doi.org/10.1145/3307650.3322247

[62] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 331–345.

[63] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining hw/sw mechanisms to improve numa performance of multi-
gpu systems,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 339–351.

[64] Y. Zhang, D. Peng, X. Liao, H. Jin, H. Liu, L. Gu, and B. He, “Large-
graph: An efficient dependency-aware gpu-accelerated large-scale graph
processing,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 18, no. 4, pp. 1–24, 2021.

1094

