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Abstract

Multi-band astronomical catalog cross-matching has always been, and will continue to be, indispensable to
astronomy research. However, the archived data volume in different wavebands is extremely huge, which results in
the cross-matching process having high computational consumption and slow response. The complexity will also
be augmented by the continuous growth of observational data. In this paper, we present mcatCS (multi-band
catalog Cross-matching Scheme), a distributed cross-matching scheme to efficiently integrate celestial object data
from billion-row multi-band astronomical catalogs. It is deployed on a cluster of commodity machines and
provides a command-line-based interface to the end user. To allow fast cross-matching, the data in catalogs are
reformatted into the Grouped Spatial Index File, which is a specially designed multi-band catalog uniform format.
Furthermore, a min-conflicts data layout strategy is utilized to maximize the parallelization of cross-matching.
Using real data, archived in the National Astronomical Observatories of China, we verify that mcatCS has good
capabilities for performing efficient and reliable cross-matching between billion-row multi-band catalogs, and
experimental results show that the query response speed is 38% to 45% greater than that of MongoDB and 21% to
32% greater than that of PostgreSQL with the HEALPix B-tree index. Moreover, although Q3C and H3C—the
extension index packages for PostgreSQL—offer faster query response speed for less than 85 million sources,
mcatCS proves to be advantageous after sources scale up to 100 million, and achieves a time reduction of 30.3%
and 30.7% compared to Q3C and H3C for 200 million sources.
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1. Introduction

With the development of space technology and in-depth
scientific research, astronomical observations have expanded to
gravitational waves and various bands of electromagnetic
waves, including visible light, radio waves, infrared, X-ray, etc.
In practical astronomy research, to acquire a comprehensive
understanding of celestial objects’ properties or to forecast
various astronomical phenomena, related data from different
wavebands usually need to be aggregated. For instance, Maselli
et al. (2015) found new blazars by aggregating recent multi-
frequency catalogs. The LIGO–Virgo detector network
observed a gravitational-wave signal in 2017 by the identifica-
tion of transient counterparts across the electromagnetic
spectrum in the same location (Abbott et al. 2017). As stated
above, astronomical data fusion is of great significance.

A common challenge astronomical data fusion faces is how
to find the corresponding data of the same object or area in
multiple data sets. A direct method is to compare each item in

the data sets, and find out which objects have the same name or
coordinates. Unfortunately, astronomical data are archived
using different systems, which implies that data sets have
various recording formats, naming schemes, and storage
modes. The complexity is also augmented by the existence of
a thousand or more features of each recorded item. Moreover,
the current astronomical observation data volume has experi-
enced continuous growth. For instance, the latest data release of
the SDSS, DR13, reached 125 TB in size (SDSS 2015); the
Five hundred meter Aperture Spherical Radio Telescope in
Guizhou China (XHWebsite 2016) is expected to generate
3 TB of data each day; the Large Synoptic Survey Telescope
will hold over 55 PB of data in the next decade (Becla et al.
2008). It is impractical to process every source in all data sets
by pairwise comparison. Therefore, an efficient and prompt
mechanism is required for high-volume and high-variety
astronomical data fusion.
The work area of astronomical data fusion has covered a

variety of domains including astronomical images, astronom-
ical catalogs, and some virtual observatories. Specifically, an
astronomical catalog is the standard quantitative data generated

Publications of the Astronomical Society of the Pacific, 131:054501 (10pp), 2019 May https://doi.org/10.1088/1538-3873/ab024c
© 2019. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

3 Corresponding author.

1

https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ab024c&domain=pdf&date_stamp=2019-03-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ab024c&domain=pdf&date_stamp=2019-03-19


after calibration and photometry on the original observational
data, and has become the most commonly used format in
astronomical research. More importantly, the Chinese Virtual
Observatory (China-VO) is in urgent need of an efficient
catalog fusion tool (Cui et al. 2013, 2017). Therefore, the work
in this paper arises from the requirements of China-VO and
mainly involves astronomical catalog fusion.

The most important step in catalog fusion is to perform cross-
matching among heterogeneous catalogs, which refers to
comparing and identifying the same celestial object data in
multiple data sets based on the approximate coincidence of the
source coordinates. Over the past decade, several methods have
existed for cross-matching catalogs on a single node (e.g., Zhao
et al. 2009; Wang et al. 2013; Budavari & Lee 2013). However,
some research, such as the generation of light curves in time-
domain astronomy, needs to process the catalogs generated by the
accumulated historical observational data. In this case, the number
of catalogs increases linearly with the accumulation of observa-
tional data. A single node can hardly store that much data, and
will limit the further improvement in performance. A distributed-
computing-based approach is a better solution. Thus, in this paper,
we propose a faster and command-line-based stand-alone scheme,
mcatCS (multi-band catalog Cross-matching Scheme), to fuse
data from the same celestial object from billion-row multi-band
astronomical catalogs, which can be run in a distributed
computing environment as well as on the end-user machine.

Considering the large number of catalogs, mcatCS is
deployed in a distributed environment consisting of commodity
machines, which allows easy appending of new records into
existing data and also scales nicely for large data sets. Because
of the different recording formats and data attributes of each
astronomical catalog generated by multiple observers, incon-
sistent fields complicate the preliminary cross-match work.
Therefore, the Grouped Spatial Index File—a uniform format
for multi-band astronomical catalogs—has been designed, and
its special structure can reduce the time complexity of the
cross-matching. Besides, a min-conflicts data layout strategy is
presented to maximize the parallelism of the cross-matching
process in the distributed environment. Thus, the cross-
matching time is further reduced and we are able to achieve
billion-row multi-band astronomical catalog fusion with ease.

The rest of this paper is organized as follows. Section 2
presents the details of data fusion in the field of astronomy and
existing work related to the methods of astronomical catalog
cross-matching and some data layout strategies. Section 3
focuses on the design of mcatCS, and the evolution of the
experiment is described in Section 4. The last section contains
our conclusion and discusses future work.

2. Related Work

Astronomical data fusion plays an important role in
astronomical discovery. The biggest challenge for astronomical

data fusion is to provide astronomers with thorough informa-
tion from multiple data sets in a short period. Several methods
exist for large-scale cross-matching to reduce the fusion
complexity. Meanwhile, index structure and storage layout
are increasingly important factors that affect the efficiency of
astronomical data fusion. Therefore, a preliminary evaluation
of these methods is needed.

2.1. Data Fusion in Astronomy

In the Big Data era, what is really needed is both access to
and analysis of data in order to exploit their value. Therefore,
the gathering, fusion, and processing of massive data sets from
multiple sources to extract valuable information is desirable,
especially in the field of astronomy.
The whole-wavelength astronomy era has given rise to an

increase not only in data volume, but also in data attributes.
Complete observable parameter space axes include quantities
such as the object coordinates, velocities or redshifts, some-
times proper motions, fluxes at a range of wavelengths, surface
brightness and image morphological parameters for resolved
sources, and variability over a range of timescales (Zhang et al.
2008). The data in the same area are derived from different
surveys, projects, or apparatus of different types: unstructured,
semi-structured, structured, and mixed. All these characteristics
render it difficult to cross-match sources from different
wavebands. Therefore, one needs to examine first what kind
of features the fusion process is expected to have to be
accurate, and identify which data elements are relevant for each
data set. Then, from other fields of information fusion, various
matching algorithms relying on specific types of data and tasks
should be constructed.
The advent of astronomical data fusion technology provides

great new opportunities for astronomy research. Cone search is
a common query method in astronomy which queries the
information related to a cone in a circular region of the sky
defined by a sky position and a radius around that position
(Williams et al. 2011). Cone search among multi-band
astronomical data is one type of astronomical data fusion in a
sense, and it is generally the first step in celestial object study,
such as supernova discovery or drawing a light curve. Our
research group (Li et al. 2017) has proposed a distributed cone
search indexing system (DCSIS), which is aimed at finding a
certain area of data from massive multi-band astronomical
catalogs. DCSIS offers astronomers a comprehensive view of
what ocurred in a certain area of the sky at multi-wavelengths,
which is of great importance in astronomical research. Apart
from this, astronomical data mining and knowledge discovery
from astronomical databases have become a hot spot in
astronomical research. With such technology, the functions of
correlative prediction, classification, clustering, and novelty
discovery can be achieved, and data fusion plays a significant
role in this process. For example, 14 new variable stars were
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discovered by data mining the image collection taken during
the 2015 asteroid photometric observations (Papini et al. 2015),
and the image collections are exactly the fusion result of time-
series images on a single field for the whole night.

2.2. Astronomical Catalog Fusion

2.2.1. Cross-matching of Celestial Objects

Cross-matching is the key technology in astronomical
catalog fusion. Because of the differences in observation
instruments, data acquisition, and calibration methods, the
same astronomical object might have slightly different
coordinates in different catalogs (Nietosantisteban et al.
2006a). Therefore, a distance threshold based on the calibration
errors is the condition for identifying whether two celestial
objects are the same. Generally, the calculation rule of angular
distance between two objects d is (where two objects O1 and
O2 are represented as being at coordinates (ra1, dec1) and (ra2,
dec2))

=
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When the two objects are close together, the angular distance
d can be approximately computed as
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The distance threshold γ used in our paper is defined as

g = * + ( )r r3 41
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2

which is the most widely used formula. Here, r1 and r2 are
the error radius of the two astronomical catalogs. In this paper,
the pairs of celestial objects that satisfy the formula d(O1,
O2)�γ will be considered as the same object.

2.2.2. Existing Astronomical Catalog Cross-Matching Methods

Since an exhaustive pairwise-based match on each catalog
requires many unnecessary comparisons, several partitioning
and parallelization methods have been proposed to speed up
cross-matching. Zones, an early cross-matching method
proposed by Gray et al. (2007), involved the division of the
spherical space into zones, which are declination stripes of
equal height to perform cross-match in related zones.
Nietosantisteban et al. (2006a, 2006b) parallelized zone-based
cross-matching computations by distributing the data and
workload among clusters of the Relative Database Manage-
ment System (RDBMS). However, classical indexation of the
RDBMS shows very poor performance, especially in the
updating phase; the addition of a new catalog can require up to
4.6 million modifications or additions, which becomes
dramatically slow (Ochsenbein et al. 2000). On this basis,
Wang et al. (2013) proposed two parallel algorithms with the

reference table indexed by zones and implemented a zone
index on the GPU, and Budavari & Lee (2013); Lee (2013)
adapt it on multiple GPUs.
Apart from the zones algorithm, the hierarchical triangular

mesh (HTM) proposed by Kunszt et al. (2001) and HEALPix
proposed by Górski et al. (2005) are two mainstream spatial
indices for cross-matching, which partition the sphere into
triangles and diamond-shaped cells, respectively, and each cell
has a unique ID from their coordinates and hierarchy. Peng et al.
(2014) combined HTM and HEALPix to solve the block-edge
problem and simultaneously speed up the cross-matching. Zhao
et al. (2009) designed a parallel cross-matching function using
HEALPix on a single SQL server and cross-matched two
catalogs with 470 million sources and 100 million sources in
32minutes. Jia et al. (2015) accelerated the cross-matching by
adopting HEALPix and performed cross-matching of 1.2 billion
sources on CPU–GPU clusters with seven nodes in 10minutes.
Pineau et al. (2011) partitioned the sky using the HEALPix
scheme and finished the cross-matching of 1 billion sources on
a single computer in 30minutes. Recently, Fan et al. (2015)
employed a Bayesian model to automatically cross-match radio
sources, which can determine whether two sources are associated
or double-lobed radio galaxies. Jia & Luo (2016) adopted a
multi-assignment single-join method for cross-matching on
heterogeneous clusters consisting of CPUs and GPUs. Riccio
et al. (2017) proposed a new partitioning method that partitioned
the sky into cells and dimensions determined by the maximum
value assumed by the main dimension of the matching area or by
the minimum partition cell-size parameter.
Another sky-indexing method, quad tree cube (Q3C), was

proposed by Koposov & Bartunov (2006). The strategy of Q3C
is similar to other sky-indexing schemes, but partitioned into a
cube. Each face of the cube is a quad-tree structure. Special
look-up tables are used to speed up the computations, which
make it faster than HTM in the case of high depth of
segmentation. The Q3C is mainly used in the PostgreSQL
database. More recently, Landais et al. (2013) were largely
inspired from Q3C to build the 2D PostgreSQL library
HealpiX-tree-C (H3C). This has the same functionality as
Q3C, but works with the HEALPix algorithm.
In addition, there are several ready-made tools for cross-

matching. SIMBAD (Wenger et al. 2000) provides a multi-
source querying function of astronomical catalogs based on
cross-identifications. TOPCAT (Taylor 2011) is a widely used
and feature-rich tool, including viewing, editing, and analyzing
catalog records, as well as a cross-matching function, and
usually a few million rows and hundreds of columns can be
easily processed. The NASA/IPAC Extragalactic Database
(NED; Helou et al. 1990)—an extragalactic database—contains
names, positions, bibliographic references, and a variety of
other data. It is similar to SIMBAD in function, although
mainly for extragalactic objects. VizieR (Ochsenbein et al.
2000), the current mainstream tool, is a database in which most
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of the catalogs are managed by a relational database while the
larger catalogs containing over 10 million rows are stored as
compressed binary files. It offers the functions of querying
observation data, cross-identification of small data sets, and
cross-matching of self-uploaded and existing data sets.
Recently, other web applications have been developed, such
as catsHTM (Soumagnac & Ofek 2018) and ARCHES (Motch
et al. 2016). However, for most web-based applications,
computation of cross-matching consumes much server
resource, thus limiting the current number of jobs and users.
For example, according to CDS xMatch service documentation
(Boch et al. 2014), the total size of uploaded tables is limited to
100MB for anonymous users, 500MB for registered users, and
all jobs are aborted if the computation time exceeds 100
minutes.

2.3. Data Layout Optimization

Striping and de-clustering are two traditional methods for
data layout in parallel storage systems. The data are partitioned
into separate regions and distributed in independent storage
nodes with a view to retrieving requests spanning different
nodes in parallel. RAID (Patterson et al. 2002), which used the
data striping technique, was originally designed for statically
distributed data over disks. Further, numerous efforts (Song
et al. 2011; Liu et al. 2017) have been devoted to parallel data
layout optimizations using data striping. Several advanced de-
clustering methods (Atallah 2003; Altiparmak & Tosun 2014)
have also been proposed for better parallelism. However, they
are optimized exclusively for range queries. If the blocks of the
request are spread across the disks in a balanced way, such a
layout strategy is expected to perform well. However, when an
arbitrary query which requires data stored on the same disk
arrives, the retrieval of this request cannot be performed in
parallel. Thus on this basis, placing the correlated data
separately was taken into account by Li et al. (2004),
Bhadkamkar et al. (2009), and Hsu et al. (2005). Both these
strategies attempted to mitigate the aforementioned problem,
yet were used primarily in a single disk. Recently, Rush et al.
(2017) proposed a layout algorithm that redistributes the
correlated data into separate nodes combining graph coloring
and bin-packing techniques. They constructed an undirected
correlation graph and used the soft coloring algorithm to color
adjacent nodes in different colors and the traditional bin-
packing algorithm to handle disk capacities. Yasar et al. (2017)
designed a distributed data layout technique for graphs; they
assigned a rank label to each block and ordered them based on
rank, which aims at reducing the I/O cost. In addition, heuristic
algorithms, such as the genetic algorithm (e.g., Zhao et al.
2013; Fan et al. 2016), and particle swarm optimization (Wang
et al. 2014), have also been applied to data layout problems.
Unfortunately, these methods are not suitable for numerous
astronomical catalogs. Their huge numbersof iterations and

calculations take the time consumption to an unacceptable level
in finding the optimal data layout. Thus, a specifically designed
data layout strategy is featured in mcatCS in order to achieve
better performance in correlated data layout.

3. Multi-band Astronomical Catalog Cross-Matching
Scheme

3.1. Problem Definition

This work focuses on cross-matching certain celestial object
data from billion-row multi-band astronomical catalogs effi-
ciently; the problem can be expressed formally as follows.
Problem. Given a query’s two input parameters: right

ascension (Tra), declination (Tdec), find all the objects (Sra,
Sdec) that satisfy Equation (4). (Sra, Sdec) represent the celestial
object’s coordinates that matched each other. The query request
will be submitted to the server, which will return the target
object data from different waveband astronomical catalogs.
The architecture of our cross-match scheme is shown in

Figure 1. The original astronomical catalogs in different
wavebands would be divided into smaller blocks and
recombined to form the grouped spatial index file. Then,
according to the data layout strategy, the index file would be
distributed over multiple servers. Ultimately, a command-line-
based query interface can take the specific coordinates as

Figure 1. Overview of mcatCS.
(A color version of this figure is available in the online journal.)
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inputs, and return all data that matched with the target in multi-
band astronomical catalogs as the result.

From the discussion in Section 2, it is clear that cross-
matching billions of records in astronomical catalogs is
prohibitively time-consuming. To accelerate this process, we
proposed a grouped spatial index file and a min-conflicts data
layout strategy to match and query the target efficiently.

3.2. Design of the Grouped Spatial Index File

Astronomical catalogs generated by different waveband
observers have different recording formats and data attributes,
and inconsistent fields make the cross-matching complicated.
Furthermore, there are millions, even billions, of celestial
object records in each original catalog, which makes it
unsuitable to match them with each other exhaustively.
Considering the “completeness” requirement of astronomical
data, we cannot directly divide the original catalogs, and what
really need to be aggregated are the catalog records rather than
the catalog itself. Thus, grouped spatial index file—a unified
file structure for astronomical catalogs from different wave-
bands—has been designed.

In the first step in the index file build, celestial coordinate
information (right ascension and declination) and the celestial
line number in each catalog are extracted from the original
catalog and recombined into a unified temporary file. Then we
divide the whole sky into a mesh on the basis of HEALPix.
Thus, each block of the sky has its own HEALPixID, so that
each record in the temporary file has a HEALPixID corresp-
onding to the sky block. Next, the records with the same
HEALPixID are grouped together and combined into new files.
By now, the temporary files have been split into many smaller
partition files. We perform this operation on each astronomical
catalog from different wavebands.

Since astronomical catalogs come from different bands of
telescopes, the number of celestial object records is likely to be
different in a sky block with the same HEALPixID. To avoid
large partition files increasing the overall cross-matching time,
the size of the partition files should be controlled within a
certain range. Thus, a strategy similar to adaptive mesh
refinement is applied to this target. Our strategy is as follows.

(1) If the size of the partition file exceeds a certain threshold,
divide it into four sub-files.

(2) If the total size of the four sub-files is less than the
threshold, combine them into a single unit.

(3) Repeat (1) and (2) until all partition file sizes remain
unchanged.

Next, we add redundancy data to partition files. The
existence of the error radius between different astronomical
catalogs can lead to two records belonging to the same celestial
object while being divided into different blocks. If we want to
find the object in a certain sky block whose center is very close
to the block boundary, the target in the other catalog located in

the adjoining block might be missed. Therefore, we expand the
scope of its blocks by adding four outer borders to ensure the
completeness of the query results.
After that, we employ all (R.A., decl.) as coordinate points to

build a K-dimensional tree (KD-tree) for every partition file.
The KD-tree is useful in range searches; it conforms to the
requirements of cross-matching and the time complexity will
be down to log(N) (N is the total number of points). However,
the KD-tree is a type of data structure just to be stored in
memory. Therefore, the last step of generating the index file is
serializing the KD-tree into a binary file using Protocol Buffer
(Google 2008).
Thus, the final grouped spatial index file is generated. The

entire process of generating the index file for a single catalog is
shown in Figure 2. When a query arrives, the corresponding
HEALPixID of the input target is calculated first and submitted
to the servers, which will then load the corresponding index
files into the memory to conduct cross-matching.

3.3. Min-conflicts Data Layout Strategy

Using the grouped spatial index, cross-matching via large
astronomy catalogs has become less of a burden. Nevertheless,
with terabytes of original catalogs and millions of query
requests per second, there is still an obstacle affecting the
response time through only one thread or node. As stated
above, it is easy to find that cross-matching can be handled in
parallel. Thus, we can use multiple server nodes to load index
files and return the result.
In a clustered environment, the communication rate between

servers is far more than that of the servers. Optimizing the data
layout of each node is a better method for reducing server
communication and making full use of the computing nodes.
Thus, we present a min-conflicts data layout strategy (MCDL),
in which we convert the data layout problem into a quad-tree
model and optimize it with an improved Trie tree structure and
lazy operation, to minimize the conflict value in each server
and scale up the parallelization of the cross-matching process.
Our goal is as follows.
(1) For each task, all the index files involved in a task are

distributed on different nodes as much as possible.

Figure 2. Generation process for grouped spatial index file.
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(2) For a single node, each node contains the index files with
the same sky block ID as little as possible.

We build a quad-tree based on the HEALPix tree structure to
organize index files in each server. If an ancestor node and a
descendant node exist in the same server simultaneously, we
call it a conflict (Figure 3). Therefore, the goal can be
summarized as follows, where Avg and Var denote the average
and variance conflicts of each server node, respectively:

( ( ( ))
( ( ( ))

Min Avg Conflict Block
Min Var Conflict Block .

id

id

The layout procedure of the index file is as follows.
(1) Conduct a depth-first search from root node.
(2) Find the index file that has a conflict with the

current node.
(3)Move this index file to the other server with the minimum

conflict value.
(4) Continue depth-first search until all files are traversed.
The minimum conflict value of each server is obtained from

top to bottom throughout the tree traversed. However, each
node’s conflict value needs to be calculated repeatedly, which
causes the calculations to increase dramatically during the
layout phase. Therefore, we present an improved Trie tree
structure, taking advantage of public prefixes of strings to
minimize unnecessary string comparisons. Meanwhile, lazy
operation is introduced to deal with the leaf node value
updated.

The Trie tree, also called the prefix tree, is one of the n-fork
trees. The basic nature of the Trie tree is that the root node
stores no characters, and each of the child nodes stores one
character; the characters on the path from the root node to one
node are connected to form a string corresponding to this node.
In our method, each server possesses a Trie tree to count the
number and conflict value of the existing index files, as shown
in Figure 3. Specifically, the characters on a path from the root
node to leaf node are connected to form the index file name-
string, and the conflict values are recorded in each node on the
path. When a new index file is added to the system, each
server’s Trie tree is traversed to find the leaf node of the path

matched with the index file name-string, and compared with the
conflict value of this leaf node’s father node. Once it is
determined to be placed in one server, the conflict value
recorded by each node corresponding to the index file name-
string is incremented by one.
As each index file is moved and placed, all the ancestor and

child nodes related to the new file need to be updated, which
will lead to the problem of repeated update. To reduce the
update and traversal times, lazy operation is introduced. This
means that when a leaf node’s conflict value needs to be
updated, we first record this operation on the father node until
the next update occurs in this node’s child node, then pass the
update operation to the child node and change each node’s
conflict values. A graphical representation of the lazy operation
process is shown in Figure 3.
Through MCDL, the grouped spatial index file would be

distributed into multiple servers with minimum conflict. When
a query arrives, the servers load the corresponding index files
separately, and perform the cross-matching in parallel.
All these algorithms, and the main source code of mcatCS,

can be found athttps://github.com/libingyao/mcatCS.

4. Experimental Evaluation

According to the two parts of mcatCS, we first evaluate the
overhead of the build time and the various sizes of grouped
spatial index files, and compare both with respect to Q3C and
H3C. Next, the performance of MCDL is evaluated, including
average conflict value and computation time, and compared
with the simulated annealing algorithm in terms of these two
aspects. Finally, we evaluate the mcatCS query performance by
performing cross-matching operations under an increasing
number of sources and compare with MongoDB, PostgreSQL
with the HEALPix B-tree index, Q3C, and H3C.
All tests in our paper are performed on Ubuntu servers

equipped with an Intel i7-4970 CPU (4 cores@3.6 GHz),
16 GB of memory, and two HDDs, one (1 TB) for the Ubuntu
operating system, and the other (3 TB) for storing the data set.
The data sets used in our experiments are from actual

Figure 3. Sample graphical representation of the lazy operation process.
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observations archived in the National Astronomical Observa-
tories of China. The details of thedata sets we used are given in
Table 1.

4.1. Evaluation of the Grouped Spatial Index File

First, we evaluate the build time and the final size of the
grouped spatial index files. In the choice of the HEALPix
partition level, considering that a high partition level would
increase the proportion of redundancy data and a low level
would result in a long matching time, we partition the whole
sky on level 13 using the HEALPix C facility. This series of
experiments is conducted on a server, and the number of
sources increases from 1 million to 15 million extracted from
2MASS. The results are shown in Figure 4. We find from the
results that, with the increase in original file size, the index
file grows at a fixed rate, and only takes a tiny fraction of the
original data, which means that the index file will consume
only a very small amount of storage space. The index file build
time increases approximately linearly as the original file grows.
This is due to the process of index file build having a time
complexity of O(N). Considering that it happens only once, so
that the time consumption is not too demanding, the results are
acceptable for real-life usage.

Then, we compare mcatCS with two sky-indexing exten-
sions for PostgreSQL— Q3C and H3C—in terms of index file
size and index file build time. Figure 5 shows a comparison of
index file size for mcatCS, Q3C, and H3C. The original
number of rows (sources) spans 20 million to 200 million. In
this diagram, irrespective of the size of the original file, the
index file size is always the same for Q3C and H3C, and grows
by 428MB for each additional 20 million of original data. The
reason is that both have the same amount of data and similar
index-building algorithm. The index file size of mcatCS also
grows by a fixed value, and for every 20 million data elements,
the index file size is 6 MB smaller than the other two. In many
cases, index performance is improved by trading space for
time, that is to say, the index takes up more space to reduce
retrieval time. Compared to the other two methods, our method
achieves an improvement in performance without increasing
the index space, which is an advantage.

As shown in Figure 6, the growth slope of index build time
of Q3C and H3C increase more and more obviously as the
number of sources grows, while that of mcatCS increases
approximately linearly and remains smaller than the other two.
In terms of the index build time, mcatCS achieves a time

reduction of 27.9% and 21.5% compared to those of Q3C and
H3C with 200 million sources.

4.2. Min-conflicts Data Layout Performance

We generated 1000 to 4000 index files using the data sets
above, and conducted the experiment and its comparison
experiments on four servers of equal capacity. To evaluate the
performance of the MCDL, the average conflict values of each
server and the total computation time of the file placement are
measured in the following series of experiments.

Table 1
Size of the Data Set

Name of Catalogs 2MASS PPMXL SDSS USNOB2

Num of records 470,992,971 910,469,430 134,269,975 305,391,856
Original file size (GB) 200.2 198.2 253.4 39.1

Figure 4. Build time and size of the grouped spatial index file.

Figure 5. Index file size of mcatCS, Q3C, and H3C for different source
numbers.
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Our innovative method is compared with one of the popular
heuristic methods, the simulated annealing algorithm, which
has strong local search ability compared with other heuristic
methods, such as the genetic algorithm. Two pruning
optimizations for the traditional iteration of simulated anneal-
ing are conducted: if the conflict value of the index file in the
target server is larger than the original after the move, the
operation is canceled; if the convergence result swings several
times between the two results, it is recorded and skipped in the
subsequent iterative process. The execution time and average
conflict value are used to measure the performance of the above
two methods.

The results are shown in Figures 7 and 8, which indicate that
our method took only a fraction of the time needed by the
simulated annealing method to complete the same task.
Although the conflict value has increased, sacrificing some of
the results’ quality in handling tons of data is acceptable at the
cost of 20% reduction in accuracy in exchange for a 60,000%

increase in processing speed. In addition, we measured the
computation speed of the conflict value of the improved Trie
tree structure introduced in Section 3.3. The results in Figure 9
show that the use of our data structure is 100 times faster than
the normal exhaustive method. This means that we can add
new generated files to the server in a timely manner and
flexibly.

4.3. mcatCS Query Performance

In this set of experiments, four servers are used to build a
distributed environment for the mcatCS. The bandwidth
between each server is approximately 600 Mbps. All the
comparison experiments in this series are also implemented in
this environment, which demonstrates the performance of the
methods fairly. We randomly generate the requests in order to
better simulate a real request, which is without a specification at
present. We input the same query commands and ensure that all
the methods return the same results. The query results are

Figure 6. Index file build time of mcatCS, Q3C, and H3C for different source
numbers.
(A color version of this figure is available in the online journal.)

Figure 7. Data placement computation time of the two methods.

Figure 8. Average conflict value of the two methods for different numbers of
index files.

Figure 9. Conflict value computation time of the two methods.
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compared with the results from VizieR to ensure the credibility
of our evaluation. The query response time is the metric of this
series of experiments, which represents the time from the
submission of the query to the return of the result to the user.

In comparison experiments of the HEALPix B-tree index
and MongoDB, the R.A., decl., catalog name, and the number
of rows where the data originally existed are extracted and
imported into databases. We use HEALPix to map the R.A. and
decl. (two-dimensional) to a single HEALPixID, and build a
B-tree index on the HEALPixID column. Figure 10 demon-
strates the cross-matching efficiency, where the same task is
completed using 38%–45% less time than MongoDB and
21%–44% less than the HEALPix B-tree index. We also find
that the advantage of mcatCS becomes more obvious with the
increase in data volume.

Next, we compare the query response time of mcatCS with
Q3C and H3C under larger data sets. The results are shown in
Figure 11. As we can see from the line graph, Q3C and H3C
outperform our scheme at the beginning while, with the
increase in data volume, this advantageous tendency decreases
gradually. Our scheme proves faster than the other two after the
number of sources is scaled up to 85 million. Moreover, after
the number of sources is scaled up to 100 million, the response
time of our scheme is reduced by 10.0%–30.3% and 10.3%–

30.7% compared to Q3C and H3C, and the time growth slope
of our scheme is smaller than those of the other two. All of the
above experiments show that mcatCS is suitable for cross-
matching a large number of astronomical catalogs.

In addition, KD-tree, B-tree, Q3C, and H3C use tree data
structures which theoretically enable data retrieval in O(log n)
time. The results of mactCS are approximately consistent with the
theoretical trend, but the other three methods are approximately
linear (we find the same results as in Koposov & Bartunov 2006;
Zhong et al. 2015). Thus, we specifically analyzed the likely

reasons behind the difference. In the HEALPix B-tree method, the
time required to select the sources with the same HEALPixID as
the request is O(log N) (N is the number of sources). Then, the
selected sources are scanned sequentially to find the matched
target. The complexity of this process is O(n) (n is the selected
number), and it also takes up a lot of time. In Q3C, the selected
sources are retrieved through the quad-tree. However, the quad-
tree has difficulty in maintaining a balanced structure. If the spatial
objects are distributed unevenly, with the insertion of the new
points, the level of the quad-tree will be deepened continuously,
and a severely unbalanced quad-tree will be formed. In this case,
the depth of each query will be greatly increased, leading to a
decline in query efficiency. Moreover, the number of result set
increases with the number of sources, which will increase the
traversal time of the results, and this may also be the reason for the
approximately linear trend. H3C is inspired from Q3C, and
follows the same idea. Theoretically, O(log n)+A and B*O(log n)
are both O(log n), but A and B cannot be ignored in the actual
computation time if these parts take up a certain amount of time.

5. Conclusion and Future Work

In this paper, a highly efficient and stand-alone multi-band
astronomical catalog cross-match scheme is presented, which
reduces the cross-matching time consumption and facilitates
the fusion of billion-row multi-band astronomical catalogs.
Astronomers can arbitrarily choose a celestial object’s
coordinates to obtain the final multi-band matching results.
To ensure high-performance, a unified format for multi-band

astronomical catalogs—the grouped spatial index file—has
been designed, which can reduce the calculation complexity.
The min-conflicts data layout strategy achieves splendid
performance in terms of time-consumption of correlated data
placement, and can add new index files to the server flexibly.
All these novel optimizations boost the cross-matching speed,

Figure 10. Query response time of mcatCS, the HEALPix B-tree index, and
MongoDB (B-tree) for different source numbers.
(A color version of this figure is available in the online journal.)

Figure 11. Query response time of mcatCS, Q3C, and H3C for different source
numbers

(A color version of this figure is available in the online journal.)
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and experimental results show that mcatCS is 38%–45% and
21%–32% faster than MongoDB and the HEALPix B-tree
index, respectively. In addition, we compared the query
performance of mcatCS with two extensions of PostgreSQL,
namely, Q3C and H3C, for a larger number of sources.
Although Q3C and H3C outperform our scheme for less than
85 million sources, the latter turns out to be more advantageous
after the number of sources reaches 100 million, and achieves a
time reduction of 30.3% and 30.7% compared to those of Q3C
and H3C for 200 million sources, affirming that our method has
obtained credible results while reducing the time consumption
of the cross-matching process.

In addition, our methods can be applied to other applications
aside from fusing astronomical catalogs. Generally, any application
that requires the integration of massive data or placing correlated
data could benefit from it, such as remote sensing and digital maps.

In future research, we will work on reducing the load time of
grouped spatial index files and try to deploy the scheme in a
geo-distributed environment. The current mcatCS provides a
fundamental data fusion index function, which can be used
directly by scientific researchers, or it can replace the
underlying data management of existing tools. We will provide
the graphic interface and more functionality in future work.

This work is supported by the Joint Research Fund in
Astronomy (U1731243, U1731125, and U1531111) under
cooperative agreement between the National Natural Science
Foundation of China (NSFC) and Chinese Academy of
Sciences (CAS), the National Natural Science Foundation of
China (11573019, 61602336). The authors thank the National
Astronomical Observatories of China and Chinese Virtual
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